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Abstract. Value-at-Risk (VaR) and expected shortfall (ES) are two key risk mea-
sures in financial risk management. Comparing these two measures has been
a hot debate, and most discussions focus on risk measure properties. This pa-
per uses independent data and autoregressive models with normal or t-distri-
bution to examine the effect of the heavy tail and dependence on comparing
the nonparametric inference uncertainty of these two risk measures. Theoret-
ical and numerical analyses suggest that VaR at 99% level is better than ES at
97.5% level for distributions with heavier tails.
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1 Introduction

Using economically meaningful risk measures is vital in market regulation, port-
folio management, and the banking and insurance industry. Two popular risk
measures are Value-at-Risk (VaR) and expected shortfall (ES). The Value-at-Risk

∗Corresponding author. Email address: lpeng@gsu.edu (L. Peng)



Q. Liu, W. Liu, L. Peng and G. Qin / Commun. Math. Res., 40 (2024), pp. 102-124 103

has been adopted for measuring market risk in trading portfolios since 1990.
Because of its lack of subadditivity and insensitivity to extreme losses, Artzner
et al. [3] advocate the coherent expected shortfall risk measure. In 2016, the mini-
mum capital requirement for market risk in the recent revision by the Basel Com-
mittee on Banking Supervision (BCBS) had moved from Value-at-Risk at 99%
level to expected shortfall at 97.5% level to capture more extreme risks (Daniels-
son and Zhou [9]). The reason to use different risk levels is that the difference
between these two risk measures is tiny when the loss has the standard normal
distribution.

Comparing these two risk measures has been hot and intensive in the liter-
ature. Emmer et al. [11] compare the pros and cons of Value-at-Risk and expec-
ted shortfall and argue that expected shortfall is better in practice, despite some
shortcomings regarding its estimation backtesting. Embrechts et al. [10] discuss
from risk aggregation and model uncertainty viewpoint and provide a broadly
accessible critical assessment of the Value-at-Risk and expected shortfall debate
triggered by Basel III. Because Cont et al. [8] argue that robustness is as vital as the
coherence properties, Kou et al. [16] compare these two risk measures using ro-
bustness related to model misspecification and tiny changes in data. Krätschmer
et al. [17] compare a list of risk measures, including Value-at-Risk and expected
shortfall by the index of qualitative robustness. Gneiting [14] shows that ES is not
elicitable, while Fissler and Ziegel [13] show that ES is jointly elicitable with VaR.

In this paper, we theoretically and empirically examine the effect of heavy tails
and serial dependence on comparing the nonparametric inference efficiency of
the Value-at-Risk at 99% level and the expected shortfall at 97.5% level. A related
but different study is Barnard et al. [4], where they compare the nonparametric
inference efficiency using independent observations with exponential power dis-
tributions. Our main conclusion is that using VaR at 99% level is better than ES at
97.5% level in terms of nonparametric inference efficiency when the underlying
loss distribution has a heavier tail. This conflicts with the preference of using ES
as it is argued that ES takes more extremes into account.

We organize the paper as follows. Section 2 presents our theoretical and nu-
merical comparison results. Section 3 is a simulation study to confirm our find-
ings in Section 2. Section 4 analyzes two insurance datasets. Section 5 concludes.

2 Theoretical and numerical comparisons

For a random variable X representing the loss of a financial institution or risk
variable, the Value-at-Risk and expected shortfall at risk level p ∈(0,1) are de-


