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Abstract. Although physics-informed neural networks (PINNs) have been successfully

applied in a wide variety of science and engineering fields, they can fail to accurately pre-

dict the underlying solution in slightly challenging convection-diffusion-reaction prob-

lems. In this paper, we investigate the reason of this failure from a domain distribu-

tion perspective, and identify that learning multi-scale fields simultaneously makes the

network unable to advance its training and easily get stuck in poor local minima. We

show that the widespread experience of sampling more collocation points in high-loss

regions hardly help optimize and may even worsen the results. These findings motivate

the development of a novel curriculum learning method that encourages neural net-

works to prioritize learning on easier non-layer regions while downplaying learning on

harder regions. The proposed method helps PINNs automatically adjust the learning em-

phasis and thereby facilitates the optimization procedure. Numerical results on typical

benchmark equations show that the proposed curriculum learning approach mitigates

the failure modes of PINNs and can produce accurate results for very sharp boundary

and interior layers. Our work reveals that for equations whose solutions have large

scale differences, paying less attention to high-loss regions can be an effective strategy

for learning them accurately.
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1. Introduction

Convection-diffusion-reaction problems appear in the modeling of various modern com-

plicated processes, such as fluid flow at high Reynolds numbers [16], drift diffusion in

semiconductor device modeling [29], and chemical reactor theory [26]. Very often the

size of diffusion is characterized by a parameter ε, which could be smaller by several or-

ders of magnitude compared to the size of convection and/or reaction, resulting in narrow

boundary or interior layers in which the solution changes extremely rapidly [31]. Classi-

cal numerical methods use layer-adapted meshes or introduce carefully designed artificial

stability terms to solve these challenging problems [2,4,33,37,38].

In recent years, there has been a surge of interest in applying neural networks in tradi-

tional scientific modeling — e.g. partial differential equations, which yields the so-called

physics-informed neural networks [5,10,11,14,17,18,21,23,30,34,35]. The main idea of

PINNs is to include physical domain knowledge as soft constraints in the empirical loss func-

tion and then use existing machine learning methodologies such as stochastic optimization,

to train the model. As an interesting alternative to traditional numerical solvers, PINN has

the advantage of flexibility in dealing with high-dimensional PDEs in complicated geom-

etry and easy incorporation of available data information. Moreover, well-trained PINNs

can have good generalization ability and can quickly predict solutions outside the compu-

tational area.

However, as reflected in some recent studies on the failure modes of PINNs [1,6–8,21],

it has been found that PINNs can fail to converge to the correct solution even for relatively

simple convection-diffusion problems. Approaches to improve the accuracy of PINNs in

solving convection-diffusion problems can be broadly classified into two categories. The

first category borrows theories and concepts from conventional numerical methods. For

example, Mojgani et al. [28] rewrote the original equation into a Lagrangian form on the

characteristic curves and then applied a two-branch neural network to solve the reformu-

lated form. However, the approach is only applicable to time-dependent problems and

not to steady-state equations. Recently, inspired by the theory of singular perturbation and

asymptotic expansions, Arzani et al. [1] used separate neural networks to learn the different

levels on the inner and outer layer regions, respectively. The second category emphasizes

machine learning techniques, such as the design of loss functions, sample selection, and

learning strategies. He et al. [15] used a weighted sum of residual losses and showed that

in order to obtain an accurate solution of the advection-dispersion equation, the weights

of the initial and boundary conditions should be larger than the PDE residuals. Daw et

al. [6] proposed an evolutionary sampling algorithm in which the collocation points evolve

gradually with training to prioritize high-loss regions while maintaining a background dis-

tribution of uniformly sampled points. Krishnapriyan et al. [21] argued that the PDE-based

soft constraints make the loss landscapes difficult to optimize, and proposed a curricu-

lum approach that sets the PINN loss term starting with a simple equation regularization

and progressively become more complex as the network gets trained, which suffers from

complex training scheme and very long training phase when solving strong singular per-

turbation problems.


