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Abstract

Neural networks are powerful tools for approximating high dimensional data that have

been used in many contexts, including solution of partial differential equations (PDEs).

We describe a solver for multiscale fully nonlinear elliptic equations that makes use of

domain decomposition, an accelerated Schwarz framework, and two-layer neural networks

to approximate the boundary-to-boundary map for the subdomains, which is the key step in

the Schwarz procedure. Conventionally, the boundary-to-boundary map requires solution

of boundary-value elliptic problems on each subdomain. By leveraging the compressibility

of multiscale problems, our approach trains the neural network offline to serve as a surrogate

for the usual implementation of the boundary-to-boundary map. Our method is applied

to a multiscale semilinear elliptic equation and a multiscale p-Laplace equation. In both

cases we demonstrate significant improvement in efficiency as well as good accuracy and

generalization performance.
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1. Introduction

Approximation theory plays a key role in scientific computing, including in the design of nu-

merical PDE solvers. This theory prescribes a certain form of ansatz to approximate a solution

to the PDE, allowing derivation of an algebra problem whose solution yields the coefficients in

the ansatz. Various methods are used to fine-tune the process of translation to an algebraic

problem, but the accuracy of the computed solution is essentially determined by the the under-

lying approximation theory. New approximation methods have the potential to produce new

strategies for numerical solution of PDEs.

* Received November 3, 2021 / Revised version received February 16, 2022 / Accepted April 14, 2022 /

Published online March 28, 2023 /
1) Corresponding author



NN-Reduced Order Schwarz for Nonlinear Elliptic Equations 571

During the past decade, driven by some remarkable successes in machine learning, neural

networks (NNs) have become popular in many contexts. They are extremely powerful in such

areas as computer vision, natural language processing, and games [45,58]. What kinds of func-

tions are well approximated by NNs, and what are the advantages of using NNs in the place of

more traditional approximation methods? Some studies [11,30,57] have revealed that NNs can

represent functions in high dimensional spaces very well. For Barron functions, in particular,

unlike traditional approximation techniques that require a large number of parameters (expo-

nential on the dimension), the number of parameter required for a NN to achieve a prescribed

accuracy is rather limited. In this sense, NN approximation overcomes the “curse of dimension-

ality”. This fact opens up many possibilities in scientific computing, where the discretization of

high dimensional problems often plays a crucial role. One example is problems from uncertainty

quantification, where many random variables are needed to represent a random field, with each

random variable essentially adding an extra dimension to the PDE [9,44,79,80]. Techniques that

exploit intrinsic low-dimensional structures can be deployed on the resulting high-dimensional

problem [12, 15, 25, 41, 48]. Another example comes from PDE problems in which the medium

contains structures at multiple scales or is highly oscillatory, so that traditional discretization

techniques require a large number of grid points to achieve a prescribed error tolerance. Efficient

algorithms must then find ways to handle or compress the many degrees of freedom.

Despite the high dimensionality in these examples, successful algorithms have been devel-

oped, albeit specific to certain classes of problems. With the rise of NN approximations, with

their advantages in high-dimensional regimes, it is reasonable to investigate whether strategies

based on NNs can be developed that may even outperform classical strategies. In this paper,

we develop an approach that utilizes a two-layer NN to solve multiscale elliptic PDEs. We test

our strategy on two nonlinear problems of this type.

The use of NN in numerical PDE solvers is no longer a new idea. Two approaches that

have been developed are to use NN to approximate the solutions [14,28,32,53,59,66,75,76,82]

or the solution map [10, 26, 38–40, 54, 55, 60–62, 67, 68, 77, 78, 81]. Due to the complicated and

unconventional nature of approximation theory for NN, it is challenging to perform rigorous

numerical analysis, though solid evidence has been presented of the computational efficacy of

these approaches.

The remainder of our paper is organized as follows. In Section 2 we formulate the multiscale

PDE problem to be studied. We give an overview of our domain decomposition strategy and

the general specification of the Schwarz algorithm. In Section 3, we discuss our NN-based

approach in detail and justify its use in this setting. We then present our reduced-order Schwarz

method based on two-layer neural networks. Numerical evidence is reported in Section 4. Two

comprehensive numerical experiments for the semilinear elliptic equation and the p-Laplace

equation are discussed, and efficiency of the methods is evaluated. We make some concluding

remarks in Section 5.

2. Domain Decomposition and the Schwarz Method for Multiscale

Elliptic PDEs

We start by reviewing some key concepts. Section 2.1 describes nonlinear multiscale ellip-

tic PDEs and discussed the homogenization limit for highly oscillatory medium. Section 2.2

outlines the domain decomposition framework and the Schwarz iteration strategy.


