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Abstract. In this paper, we propose a conservative and positivity-preserving method
to solve the anisotropic diffusion equations with the physics-informed neural network
(PINN). Due to the possible complicated discontinuity of diffusion coefficients, with-
out employing multiple neural networks, we approximate the solution and its gradi-
ents by one single neural network with a novel first-order loss formulation. It is proven
that the learned solution with this loss formulation only has the O(ϵ) flux conserva-
tion error theoretically, where the parameter ϵ is small and user-defined, while the loss
formulation with the original PDE with/without flux conservation constraints may
have O(1) flux conservation error. To keep positivity with the neural network approx-
imation, some positive functions are applied to the primal neural network solution.
This loss formulation with some observation data can also be employed to identify the
unknown discontinuous coefficients. Compared with the usual PINN even with the
direct flux conservation constraints, it is shown that our method can significantly im-
prove the solution accuracy due to the better flux conservation property, and indeed
preserve the positivity strictly for the forward problems. It can predict the discontinu-
ous diffusion coefficients accurately in the inverse problems setting.
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1 Introduction

Anisotropic diffusion equations exist in the mathematic modeling of many practical ap-
plications such as inertial confinement fusion (ICF) [19, 23], reservoir engineering [33],
astrophysical systems [28]. Generally, the computational domain is quite complicated for
these practical applications. The traditional mesh-based method will be time-consuming
even just for the mesh generation. In addition, the different materials and localized
physical variable (e.g., magnetic field) may result in the multiscale diffusion transport
coefficients, thus introducing an anisotropic diffusion equation defined on the complex
computational domain.

For solving this multiscale diffusion problem on the general computational meshes,
many traditional mesh-based numerical methods have been investigated in the last
decades. As we know, some finite volume scheme based on the multi-point stencil are
developed. The Kershaw scheme was proposed in [16] for the smooth meshes. After
that, the mimetic finite difference method [29], nine-point scheme [4, 34] and multi-point
flux approximation (MPFA) [1] were introduced on general distorted meshes. Also some
variants [9, 11] were proposed for anisotropic diffusion tensors with improved heat flux
approximation. Recently, for keeping positivity numerically, some nonlinear finite vol-
ume schemes were proposed in [24,30,38,41], where Picard or Newton iteration must be
employed to find their numerical solutions. To make ease of simulation on the complex
domain, the PINN methodology [32] is a promising alternative method, but the physics
embedded in the standard PINN may be insufficient for these multiscale problems.

In the context of scientific computing, the idea of PINN for solving PDEs can be
tracked to some pioneer papers [18, 20] in the 1990s. It is free of mesh generation and
less sensitive to the dimensionality of the problems. As the vast advance of computing
power and machine learning platform (e.g. TensorFlow), recently, Raissi et al. [32] pro-
posed PINN for the solution and parameters discovery of PDE. The main idea behind the
PINN is that the governing equation is used in the loss function to constraint the neural
network approaching the strong solution of PDEs. PINNs have been successfully used in
solving a large number of nonlinear PDEs, including Burgers, Schröinger, Navier-Stokes,
Allen-Cahn, Euler equations, etc [6, 13, 21, 25, 27, 37, 39, 40, 43, 44].

As for the second-order elliptic problems, the convergence analysis was developed
for the linear elliptic and parabolic equation in [36] and [14]. Solving a class of second-
order boundary-value problems on the complex geometries was studied in [2] and [35],
where the boundary condition is trained with a separate neural network in the latter
paper. A comprehensive review of different boundary condition enforcement manners
was given by [5]. In [12], solving advection-diffusion equations were addressed for high
Péclet number. An extreme machine learning method [7] with only one hidden layer was
proposed for 1D diffusion problems. To alleviate the high-order derivatives of neural
network approximation, the variational PINN was introduced in [17]. Similarly, the deep
mixed residual method [26] and deep least-squares methods [3] have been introduced.
The asymptotic-preserving first-order deep neural network for one special anisotropic


