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Abstract. In this paper we obtain the boundedness of non-regular pseudo-differential
operators with symbols in Besov spaces on matrix-weighted Besov-Triebel-Lizorkin
spaces. These symbols include the classical Hörmander classes.
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1 Introduction

The pseudo-differential operators have been widely used in plenty of mathematical areas;
see [1, 11, 14, 16, 17, 28, 31–33, 36, 38]. The boundedness of pseudo-differential operators
on Triebel-Lizorkin and Besov spaces has been considered in [6, 22–25, 27, 30]. The au-
thors of the paper proved the boundedness of the Hörmander classes pseudo-differential
operators on matrix-weighted Besov spaces and Triebel-Lizorkin spaces in [2].

In [18, 21], Marschall obtained the boundedness of non-regular pseudo-differential
operators corresponding to symbols in the class SBm

δ (r,µ,ν;N,λ) (see Definition 2.5) on
Triebel-Lizorkin spaces and Besov spaces. Then Sato obtained the boundedness of non-
regular pseudo-differential operators on the weighted Triebel-Lizorkin spaces in [29], and
Drihem and Hebbache obtained the boundedness of non-regular pseudodifferential op-
erators on variable Triebel-Lizorkin spaces in [7].

In the last three decades, inspired by the applications of matrix-weighted functions,
many matrix-weighted function spaces have appeared, such as matrix-weighted Lebesgue
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spaces [13,35], matrix weighted Besov and Triebel-Lizorkin spaces [4,9,10,26,37], matrix-
weighted Besov type spaces and Triebel-Lizorkin type spaces [3]. In [37], Wang, Yang
and Zhang obtained the characterizations of matrix-weighted Triebel-Lizorkin spaces
in terms of the Peetre maximal function, the Lusin area function, and the Littlewood-
Paley g∗λ-function. They also proved the boundedness of Fourier multipliers on matrix-
weighted Triebel-Lizorkin spaces under the generalized Hörmander condition. In [3],
Bu, Hytönen, Yang, Yuan proposed a new concept of Ap-dimension of matrix weights.
Then they obtained the boundedness of φ-transform, pseudo-differential operators, trace
operators, and Calderón-Zygmund operators on matrix-weighted Besov type spaces and
Triebel-Lizorkin type spaces. In particular, the symbols of their pseudo-differential oper-
ators are in the classical Hörmander class Sm

1,1.
Since the class SBm

δ (r,µ,ν;N,λ) includes some Hörmander classes as special cases, in
this paper, we consider the boundedness of non-regular pseudo-differential operators
with symbols in SBm

δ (r,µ,ν;N,λ) on matrix-weighted Besov spaces and Triebel-Lizorkin
spaces.

This paper is organized as follows. In Section 2, we give some convenient notations
and recall several concepts about matrix weights and function spaces. Some key lem-
mas and basic tools are given in Section 3. The boundedness of non-regular pseudo-
differential operators on matrix-weighted Besov spaces and Triebel-Lizorkin spaces are
described in Section 4.

2 Preliminaries

Let χE be the characteristic function of the set E ⊂Rn. Let N0 :=N∪{0}. The Fourier
transform of f is defined by F ( f ) := f̂ :=

∫
Rn f (x)e−2πix·ξdx and the inverse Fourier trans-

form of f by F−1( f ) := f̌ :=
∫

Rn f (x)e2πix·ξdx. Let S (Rn) denote the Schwartz space, and
let S ′(Rn) be its dual.

Definition 2.1. Let φ0 be a Schwartz function such that supp(φ0)⊂ {ξ ∈ Rn : |ξ| ≤ 2} and
φ0(ξ)=1 for |ξ|≤1. Moreover, put φj(ξ)=φ0(2−jξ)−φ0(2−j+1ξ) for j∈N. Then supp(φj)⊂
{ξ : 2j−1≤|ξ|≤2j+1} for all j∈N and

∞

∑
j=0

φj(ξ)=1

for ξ ∈ Rn. Hence {φj}j∈N0 is a partition of unity on Rn subordinated to the dyadic rings
{ξ : 2j−1≤|ξ|≤2j+1}, j∈N, and B(0,2).

We also set φ̃0 :=φ0+φ1, and φ̃j :=φj−1+φj+φj+1 for j∈N. Note that, φj φ̃j=φj for j∈N0
and

supp(φ̃j)⊂{ξ∈Rn : 2j−2≤|ξ|≤2j+2} for j≥2,

supp(φ̃j)⊂{ξ∈Rn : |ξ|≤2j+2} for j=0,1.


