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We treat infinite horizon optimal control problems by solving the associated station-

ary Bellman equation numerically to compute the value function and an optimal feedback 

law. The dynamical systems under consideration are spatial discretizations of non linear 

parabolic partial differential equations (PDE), which means that the Bellman equation suf-

fers from the curse of dimensionality. Its non linearity is handled by the Policy Iteration 

algorithm, where the problem is reduced to a sequence of linear equations, which remain 

the computational bottleneck due to their high dimensions. We reformulate the linearized 

Bellman equations via the Koopman operator into an operator equation, that is solved us-

ing a minimal residual method. Using the Koopman operator we identify a preconditioner 

for operator equation, which deems essential in our numerical tests. To overcome computa-

tional infeasibility we use low rank hierarchical tensor product approximation/tree-based 

tensor formats, in particular tensor trains (TT tensors) and multi-polynomials, together 

with high-dimensional quadrature, e.g. Monte-Carlo. By controlling a destabilized version 

of viscous Burgers and a diffusion equation with unstable reaction term numerical evidence 

is given.

product approximation, Variational Monte-Carlo.

1. Introduction

In optimal control theory finding a feedback law enables us to get a robust online con-

trol for dynamical systems. One prominent approach to find an optimal feedback law is cal-

culating the value function, which can be done by solving either the Bellman equation or

the Hamilton-Jacobi-Bellman equation (HJB). Popular numerical solutions to this problem

are semi-Lagrangian methods [18, 23, 67], Domain splitting algorithms [24], variational itera-

tive methods [36], data based methods with Neural Networks [48, 50] or Policy Iteration with

Galerkin ansatz [37, 46].

The dynamical systems under consideration are spatial discretizations of non linear parabolic

partial differential equations (PDE). The dimension of the HJB and the Bellman equation equals

the size of the spatial discretization of the PDE, which in theory is infinite and in practice is

extremely high. Two principal difficulties are the non linearity and that it may be posed in
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high spatial dimensions. One can address the non linearity by the Policy Iteration. Fixing

a policy reduces the non linear Bellman equation to a linear equation. The policy is updated

by an optimality condition. The solution of the linearized Bellman is the remaining numerical

bottleneck and is equivalent to a linear hyperbolic PDE, a linearized HJB equation. We stress

that in order to synthesize the optimal feedback control a function representation of the value

function is needed. Indeed, it is not sufficient to have point-evaluations of the value function.

Most methods for the numerical solution of hyperbolic PDEs struggle with the curse of

dimensionality, i.e. the exponential growth of complexity with respect to the dimension of

the underlying dynamical system. To alleviate this problem different methods have been pro-

posed, like combinations of Proper Orthogonal Decomposition (POD) and semi-Lagrangian

methods [1], POD and tree structures [2], efficient polynomial Galerkin approximation and

model reduction [37] or, recently, tensor based approaches [19, 34].

By using the Koopman/composition operator our approach transforms the linearized Bell-

man equation into an operator equation. A solution is approximated via a Least-Squares/mini-

mal residual method on a finite dimensional ansatz space, e.g. multi dimensional polynomials.

Even for ordinary differential equation (ODE) systems with considerably few variables this

ansatz space becomes huge. By solving the Least-Squares problem on the non linear manifold

of Tensor Trains with fixed ranks we reduce the complexity from an exponential to a polynomial

dependency on the dimensions of the underlying system. Tensor trains are particular cases of hi-

erarchical (Tucker) or tree-based tensor representations [5, 27]. In principle, the Least-Squares

method requires the evaluation of high-dimensional integrals, which is practically infeasible.

Therefore, the integration must be replaced by numerical quadrature. Monte-Carlo and quasi

Monte-Carlo methods are a canonical choice, since they do not suffer from the curse of dimen-

sionality. We call the resulting discrete approach variational Monte-Carlo (VMC) [21]. The

term originates in quantum physics, where one minimizes the energy of a quantum system to

find the ground state [14, 49]. Shortly after, [71] introduced the ideas of empirical risk mini-

mization, which are related to the variational Monte-Carlo concept. In [21] both approaches

are unified.

It turns out that the Koopman operator can be evaluated point-wise in certain quadrature

points by computing trajectories of the underlying dynamical system. In contrast to the lin-

earized HJB the linearized Bellman equation can be solved model-free, i.e. without explicit

knowledge of the underlying dynamical system. Finally, we remark that the present treatment

of high-dimensional operators in the tensor setting differs essentially from direct treatments as

in [5,27]. In there, the underlying partial differential operator has an explicit representation or

approximation in a low rank tensor form. However, the issue of finding an explicit represen-

tation/approximation of underlying operators in low rank tensor form compromises the class

of treatable problems severely. Using the model-free VMC approach the underlying operators

only have to be evaluated at sample points and thus circumvent the issue of representing the

operator. In particular, this means that we do not represent the Koopman operator in a low

rank tensor format and it is unclear whether such a representation exists. Instead, we only

evaluate its action at certain points.

Analogously to [42] one can also incorporate control constraints in terms of projection op-

erators. The generalization of the present approach to stochastic control problems and finite

horizon problems is discussed in [22, 54]. In particular, there is a stochastic counterpart of

the deterministic Koopman operator, which is the semi group generated by the backward Kol-

mogorov operator [16,40,45]. We would like to mention recent groundbreaking progress in the


