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Abstract

A Riemannian gradient descent algorithm and a truncated variant are presented to solve

systems of phaseless equations |Ax|2 = y. The algorithms are developed by exploiting the

inherent low rank structure of the problem based on the embedded manifold of rank-1

positive semidefinite matrices. Theoretical recovery guarantee has been established for the

truncated variant, showing that the algorithm is able to achieve successful recovery when

the number of equations is proportional to the number of unknowns. Two key ingredients in

the analysis are the restricted well conditioned property and the restricted weak correlation

property of the associated truncated linear operator. Empirical evaluations show that our

algorithms are competitive with other state-of-the-art first order nonconvex approaches

with provable guarantees.
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1. Introduction

In this paper we are interested in finding a vector x ∈ Rn or Cn which solves the following

system of phaseless equations:

|Ax|2 = y, (1.1)

where A ∈ Rm×n/Cm×n and y ∈ Rm are both known. Compared with linear systems of the

form Ax =
√
y, it is self-evident that after taking the entrywise modulus phase information is

missing from (1.1). Thus, seeking a solution to (1.1) is often referred to as generalized phase

retrieval, extending the classical phase retrieval problem where A is a Fourier type matrix to

a general setting. Phase retrieval arises in a wide range of practical context such as X-ray

crystallography [1], diffraction imaging [2] and microscopy [3], where it is hard or infeasible to

record the phase information when detecting an object. Many heuristic yet effective algorithms

have been developed for phase retrieval, for example, Error Reduction, Hybrid Input Output

and other variants [4–7].
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Injectivity has been investigated in [8,9], showing that m ≥ 2n−1 real generic measurements

or m ≥ 4n − 4 complex generic measurements are sufficient to determine a unique solution

of (1.1) up to a global phase vector. Despite this, solving systems of phaseless equations

is computationally intractable. For simplicity, let us consider the real case. Then one can

immediately see the combinatorial nature of the problem since there are 2m possible signs for y.

In fact, a very simple instance of (1.1) can be reduced to the NP-hard stone problem [10].

Over the past few years computing methods with provable guarantees have received exten-

sive investigations for solving systems of phaseless equations, typically based on the Gaussian

measurement model. In a pioneering work by Candès et al. [11], a convex relaxation via trace

norm minimization, known as PhaseLift, was studied. The approach was developed based on the

fact that (1.1) can be cast as a rank-1 positive semidefinite matrix recovery problem. Inspired by

the work on low rank matrix recovery, it was established that under the Gaussian measurement

model PhaseLift was able to find the solution of (1.1) with high probability provided that1)

m & n logn. This sampling complexity was subsequently sharpened to m & n in [12]. The

recovery guarantee of PhaseLift under coded diffraction model was studied in [13, 14]. There

were also several other convex relaxation methods for solving systems of phaseless equations,

see for example [15–18].

Convex methods are amenable to detailed analysis, but they are not computationally desir-

able for large scale problems. Thus more scalable yet still provable nonconvex methods have

received particular attention recently. A resampled variant of Error Reduction has been investi-

gated in [19], showing that m & n log3 n+n logn log(1/ǫ) log log(1/ǫ) number of measurements

are sufficient for the algorithm to attain an ǫ-accuracy. A gradient descent algorithm called

Wirtinger Flow (WF) was developed based on an intensity-based loss function [20], and it

was shown that the algorithm could achieve successful recovery provided m & n logn [20, 21].

A variant of WF, known as Truncated Wirtinger Flow (TWF), was introduced in [10] based on

the Poisson loss function, which could achieve successful recovery under the optimal sampling

complexity m & n. In [22], the algorithm was analyzed when median truncation was used.

Another gradient descent algorithm, termed Truncated Amplitude Flow (TAF), was developed

in [23] based on an amplitude-based loss function. Optimal theoretical recovery guarantee of

TAF was similarly established under the Gaussian measurement model. In [24], the classical

Kaczmarz method for solving systems of linear equations was extended to solve the generalized

phase retrieval problem. The optimal sampling complexity for the successful recovery of the

Kaczmarz method was established in [25, 26] when the unknown vector and the measurement

matrix were both real.

The nonconvex algorithms mentioned in the last paragraph are all analyzed based on some

local geometry and hence closeness of the initial guess to the ground truth is required [10, 20,

23, 25, 26]. In contrast, there is a line of research which attempts to study the global geometry

of related problems, see [27, 27, 28] and references therein. Many algorithms have also been

designed to utilize the global geometry effectively [29–32]. We omit further details as it is

beyond the scope of this paper and interested readers are referred to the references.

Main contributions. In this paper we propose a Riemannian gradient descent algorithm for

solving systems of phaseless equations. The algorithm is developed by exploiting the inherent

low rank structure of (1.1) based on the embedded manifold of low rank matrices, similar to

the Riemannian gradient descent algorithm for the low rank matrix recovery problem studied

1) The notation m & f(n) means that there exists an absolute constant C > 0 such that m ≥ C · f(n).


