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Abstract. This study investigates high-order face and edge elements in finite element
methods, with a focus on their geometric attributes, indexing management, and prac-
tical application. The exposition begins by a geometric decomposition of Lagrange
finite elements, setting the foundation for further analysis. The discussion then ex-
tends to H(div)-conforming and H(curl)-conforming finite element spaces, adopting
variable frames across differing sub-simplices. The imposition of tangential or normal
continuity is achieved through the strategic selection of corresponding bases. The pa-
per concludes with a focus on efficient indexing management strategies for degrees
of freedom, offering practical guidance to researchers and engineers. It serves as a
comprehensive resource that bridges the gap between theory and practice.
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1 Introduction

This paper introduces node-based basis functions for high-order finite elements, specif-
ically focusing on Lagrange, BDM (Brezzi-Douglas-Marini) [8, 9, 18], and second-kind
Nédélec elements [6, 18]. These elements are subsets of the spaces H1, H(div), and
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H(curl), with their shape functions being the full polynomial space Pn
k , where k repre-

sents the polynomial degree, and n the geometric dimension. Notably, varying continuity
across these elements gives rise to distinct characteristics. When n=3, for the lowest de-
gree k=1, degrees of freedom (DoFs) of the H(div)-conforming finite element are posed
on faces and DoFs of the H(curl)-conforming finite element are posed on edges. There-
fore, conventionally an H(div)-conforming finite element is referred to as a face element,
and an H(curl)-conforming element is an edge element. They are also known as the sec-
ond family of face and edge element as the shape function space is the full polynomial
space while the first family consists of incomplete polynomial spaces [6].

In the realm of Lagrange finite elements, nodal basis functions stand out for their
simplicity and ease of computation. In contrary, constructing basis functions for face and
edge elements is more intricate. Traditional approaches involve the Piola transforma-
tions, where basis functions are first devised on a reference element and subsequently
mapped to the actual element using either covariant (to preserve tangential continuity,
in the case of edge elements) or contravariant (to maintain normal continuity, for face
elements) Piola transformations. Detailed explanations of this approach can be found
in [17, 20], and implementation is in open-source software such as MFEM [5] and Fen-
ics [4].

Arnold, Falk and Winther, in [7], introduced a geometric decomposition of polyno-
mial differential forms. Basis functions based on Bernstein polynomials were proposed,
paving the way for subsequent advancements. In [1,3], basis functions founded on Bern-
stein polynomials were explored, accompanied by fast algorithms for the matrix assem-
bly. Additionally, hierarchical basis functions for H(curl)-conforming finite elements
were introduced in [2, 22–24].

While these methods offer valuable insights, they can be quite complex. Researchers
have thus ventured into simpler approaches. In [14], a method multiplying scalar nodal
finite element methods by vectors was introduced, resulting in H(div) and H(curl) con-
forming finite elements that exhibit continuity on both vertices and edges.

We propose a straightforward method to construct nodal bases for the second family
face and edge elements. Initially, we clarify the basis of Lagrange elements by consid-
ering them dual to the degrees of freedom, which are determined by values at interpo-
lation points. We then extend this principle to vector polynomial spaces, wherein each
interpolation point establishes a frame that includes both tangential and normal (t-n)
directions. We impose the continuity of either tangential or normal components by ap-
propriate choice of the t-n decomposition. We explicitly derive the dual basis functions
for these elements from the basis functions of Lagrange elements.

This idea has been previously explored in [10, 15, 16] for constructing a hierarchical
basis of H(div) elements in two and three dimensions. Through a rotation process, it was
also adapted for H(curl) elements in two dimensions, as detailed in [15, 16]. However,
extending their methodology to higher dimensions presented significant challenges. Our
work advances this field by developing a geometric decomposition of the second family
face and edge elements in arbitrary dimensions and orders. Additionally, we introduce
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