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Abstract. With continuous developments in various techniques, machine learning is
becoming increasingly viable and promising in the field of fluid mechanics. In this
article, we present a machine learning approach for enhancing the resolution and ro-
bustness of the weighted compact nonlinear scheme (WCNS). We employ a neural
network as a weighting function in the WCNS scheme and follow a data-driven ap-
proach to train this neural network. Neural networks can learn a new smoothness
measure and calculate a weight function inherently. To facilitate the machine learn-
ing task and train with fewer data, we integrate the prior knowledge into the learning
process, such as a Galilean invariant input layer and CNS polynomials. The normal-
ization in the Delta layer (the so-called Delta layer is used to calculate input features)
ensures that the WCNS3-NN schemes achieve a scale-invariant property (Si-property)
with an arbitrary scale of a function, and an essentially non-oscillatory approxima-
tion of a discontinuous function (ENO-property). The Si-property and ENO-property
of the data-driven WCNS schemes are validated numerically. Several one- and two-
dimensional benchmark examples, including strong shocks and shock-density wave
interactions, are presented to demonstrate the advantages of the proposed method.
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1 Introduction

In the last few decades, computational fluid dynamics (CFD) has attracted much atten-
tion in simulating various flow structures with high-order accuracy and high resolution,
such as vortex, shockwave, transition, separation, and reattachment. The solution of
hyperbolic partial differential equations requires that numerical schemes stably capture
discontinuities and resolve small-scale structures with high-fidelity. These two aspects
put forward almost contradictory requirements, which renders the development of nu-
merical schemes a long-term challenge.

Weighted essentially non-oscillatory (WENO) scheme is regarded as a suitable choice
to address the aforementioned issues. It was first proposed by Liu et al. [1] based on
the extension of the ENO scheme [2, 3]. Later, Jiang and Shu [4] designed nonlinear
weights and local smoothness to modify the classical finite volume WENO scheme [1].
They developed a fifth-order WENO scheme for hyperbolic conservation laws, which
is denoted as WENO-JS. The framework of WENO-JS has been extensively applied in
developing a robust numerical method for compressible turbulence [5]. From then on,
different improved versions of WENO schemes have been constructed. One kind of
method focuses on adjusting or redesigning the nonlinear weights. For example, Henrick
et al. [6] pointed out that WENO-JS suffers from a loss of accuracy near smooth extrema,
so they constructed a new weighting function and proposed WENO-M such that the
overall scheme recovers the ideal order of convergence. Borges et al. [7] developed a
higher-order global smoothness indicator and formulated WENO-Z. This scheme allows
for better treatment of discontinuities while further minimizing the numerical dissipa-
tion and achieving a higher resolution. In addition, there are also several other typical
WENO schemes, such as the Hermite WENO scheme [8,9], the Trigonmrtric WENO [10],
the WENO-Z+ scheme [11], the central WENO scheme [12], just to name a few.

Another high-resolution and convenient scheme is the weighted compact nonlinear
scheme (WCNS) derived by Deng and Zhang [13] for hyperbolic equations. WCNS is an
improvement of the compact nonlinear scheme (CNS) proposed by Deng and Maekawa
[14]. It combines WENO reconstruction [1] and cell-centered compact schemes [15]. With
the help of the conservative metric method (CMM) [16] and the symmetrical conservative
metric method (SCMM) [17], WCNS can ensure the geometric conservation law (GCL).
WCNS has been successfully applied to complex grid problems [18] and various flow
simulations, including boundary layer transition [19], turbulence, and shock boundary
layer interactions [20]. In addition, many efforts have been built on the classical WCNS
[21–24]. The procedure of WCNS discretization can be described by the following three
steps [13]: (i) interpolate the flow variables at nodes to obtain the left and right values at
half-nodes, (ii) evaluate the values of flux at half-nodes, and (iii) compute flux derivatives
from half-nodes to nodes by using centered differencing schemes. It has been established
that the step of nonlinear interpolation is essential for the resolution and shock-capturing
capacity of the WCNS scheme [25, 26]. In light of this, studies and improvements for
this process have garnered much interest. Here, we focus on the first step of the WCNS


