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Abstract The authors consider the global existence and the blow-up phenomenon
of classical solutions with small amplitude to the Cauchy problem for general quasilin-
ear hyperbolic systems with characteristics with constant multiplicity and given some
applications. :

Key Words  Global classical solution: general quasilinear hyperbolic system:
characteristic with constant multiplicity. :

Classification 350145, 35L67.

1. Introduction

Consider the first order quasilinear hyperbolic system
— + Alu)— =10 i okedi)

where u = (uy,-++,u,)7 is the unkown vector function of (t,z) and A(u) = (a;(u)) is
an n x n matrix with C? elements a;;(u) (5,7 =1,-.+,n).

- By hyperbolicity, for any given u on the domain under consideration, A(u) has n real
eigenvalues Aj(u),---, A,(u) and a complete system of left (resp. right) eigenvectors.
Fori=1,---,n, let li(u) = (Ii1(u), -, Ln(u)) (resp. ri(u) = (rifu), -« rin(u))T) be
a left (resp. right) eigenvector corresponding to A;(u):

Li(u)A(u) = Ai(u)li(u)  (resp. Au)rs(u) = X;(w)ri(u)) (1.2)

We have

det |l;;(u)| # 0 (equivalently, det|rij(u)| #0) (1.3)
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All Ai(u), lij(u) and ri;(u) (4,5 = 1,-++,n) are supposed to have the same regularity
as aij(u) (4,7 =1,---,n).
Without loss of generality, we suppose that on the domain under consideration

L(u)ri(u) =dy (5,5=1,--,n) (1.4)

and
ri(u)ri(u) =1 (i=1,... , 1) (1.5)

where d;; stands for the Kronecker’s symhol.
In this paper, we suppose that on the domain under consideration, each eigenvalue
of A(u) has a constant multiplicity. Without loss of generality, we may suppose that

Alu) 2 X0 (u) == Ay(u) < Aprilu) < -0 < Ap(u) (1.6)

where 1 < p < n. When p = 1, the system (1.1) is strictly hyperbolic; while, when
p > 1, (1.1) is a non-strictly hyperbolic system with characteristics with constant
multiplicity. :

We suppose furthermore that on the domain under consideration, each multiple
characteristic is linearly degenerate in the sense of P.D. Lax. Then, by (1.6), when
p = 1 we have

VAw)ri(u) =0 (i=1,---,p) (1.7)
Remark 1.1 If the system (1.1) can be written in the form of conservation laws
Ou , Of(u)
= 1.
ot i o g t:8)

where f{u) = (fi(u), -, fu(u))T, then (1.6) implies (1.7) (See G. Boillat [1] and H.
Freistiihler [2]).

For the initial data :

t=0:u=¢(z) (1.9)

where ¢(z) is a “small” C" vector function of z with certain decay properties as |z| —
+oc, we shall investigate the global existence or the blow-up phenomenon of C! solution
to the Cauchy problem (1.1) and (1.9).

We point out that in the strictly hyperbolic case:

Mlu) < Ao(u) - < An () | (1.10)

suppose that there exists a nonempty set J C {1,2,.--,n} such that if { € J, theh
Ai(u) is genuinely nonlinear in the sense of P.D. Lax:

Vailu)ri(u) #£0 (1.11)
while, if §€.J, then A;(u) is linearly degenerate in the sense of P.D. Lax:

"VAlu)ry(u) =0 (1.12)



