EXISTENCE OF HARMONIC FUNCTIONS WITH FINITE ENERGY ON COMPLETE RIEMANNIAN MANIFOLDS*

Li Jiayu

(Department of Mathematics, Anhui University, Hefei 230039)

Wang Silei

(Department of Mathematics, Hangzhou University, Hangzhou 310028) (Received Feb. 1, 1992; revised June 30, 1992)

Abstract Let M be a noncompact complete Riemannian manifold. We consider the existence of harmonic functions with $|\nabla u| \in L^P(M)$.

Key Words Harmonic function; finite energy; noncompact manifold. Classification 58E20.

1. Introduction

Let M be a noncompact complete Riemannian manifold of dimension n. Yau^[1] proved that every nonnegative $L^p(1 subharmonic function on <math>M$ is constant. Later, Li and Schoen^[2] proved that if the Ricci curvature of M is nonnegative, then every nonnegative L^p (0 < $p \le 1$) subharmonic function on M is also constant (see also^[3]). Dodziuk^[4] considered the relations between the geometry or topology of a manifold and the spaces of L^2 harmonic forms on it.

In this paper, we consider the existence of harmonic functions with $|\nabla u| \in L^p(M)$. If M has nonnegative Ricci curvature, we know^[5] that $\Delta |\nabla u|^2 \geq 0$ when u is a harmonic function, so there is no nonconstant harmonic function with $|\nabla u| \in L^p(M)$ (0) by Yau's result and the result of Li-Schoen (Example 2 in [4] implies that there is not any nonconstant harmonic function <math>u with $|\nabla u| \in L^2(M)$ on $M = R \times S^1$ with the product metric). For this reason, we mainly consider the case where M is a negatively curved manifold. We first give an example similar to Example 1 in [4] to show that there exists a complete Riemannian manifold M with sectional curvature K_M satisfying $-1 \leq K_M \leq 0$, on which there does exist a nonconstant harmonic function u with $|\nabla u| \in L^p(M)$ for any 1 . For every <math>0 , we then give a complete Riemannian manifold <math>M with Ricci curvature Ric(M) satisfying $Ric(M) \sim -Cr(x)^{-2}$ as $r(x) \to \infty$, where r(x) is the geodesic distance from x to some fixed point in M

^{*} The research supported by National Natural Science Foundation of China.

and C > 2, on which there is a nonconstant harmonic function u with $|\nabla u| \in L^p(M)$. Finally we prove the following theorem.

Theorem 1 Let M be a simply connected complete Riemannian manifold of dimension n with constant negative curvature $-K^2$.

- (1) If u is a harmonic function and $|\nabla u| \in L^p(M)$ for $1 \le p \le n-1$, then u = const.
- (2) There exists a nonconstant harmonic function u with $|\nabla u| \in L^p(M)$ for any n-1 .

For the nonexistence result we have a more general theorem (Theorem 2 in Section 3). For the existence result we suspect that if the sectional curvature K_M satisfies $-K_2^2 \le K_M \le -K_1^2 < 0$ we may have a result similar to the second part of Theorem 1, but we think new ideas are needed to prove it.

2. Two Examples

Example 1 Suppose $D^2 \subset R^2$ is the unit disc, $ds_0^2 = dx_1^2 + dx_2^2$, $ds^2 = \frac{4}{(1 - x_1^2 - x_2^2)^2}$ ds_0^2 , $M_0 = (D^2, ds_0^2)$, $M_1 = (D^2, ds^2)$. Let T^{n-2} be the n-2 torus with a flat metric. We set $M = M_1 \times T^{n-2}$ with the product metric.

Clearly $K_{M_1} \equiv -1$, so, $-1 \leq K_M \leq 0$. $\Delta_M = \Delta_{M_1} + \Delta_{T^{n-2}}$. We choose $u(x_1, x_2, \dots, x_n) = x_1$, then $\Delta_{M_0} u = 0$ and $\Delta_{M_1} u = 0$.

$$\begin{split} \int_{M} |\nabla_{M} u|^{p} dV_{M} &= \int_{T^{n-2}} \int_{M_{1}} |\nabla_{M_{1}} u|^{p} dV_{M_{1}} dV_{T^{n-2}} \\ &= \int_{T^{n-2}} \int_{M_{0}} |\nabla_{M_{0}} u|^{p} \varphi^{2-p} dV_{M_{0}} dV_{T^{n-2}} \end{split}$$

where $\varphi(x) = \frac{2}{1 - x_1^2 - x_2^2}$, $|\nabla_{M_0} u| = 1$.

We therefore have $|\nabla_M u| \in L^p(M)$ for any 1 .

Example 2 ([2]) Let M_0 be a compact surface with arbitrary genus. Assume the metric on M_0 around some point $O \in M_0$ is flat. Hence locally around O we can write the metric in polar coordinates as $ds_0^2 = dt^2 + t^2d\theta^2$. Consider the Green's function on M_0 with the pole at O, G(0,x) = f(x). By definition f(x) is harmonic on $M\setminus\{O\}$ with respect to the given metric ds_0^2 . Let $ds^2 = \rho^2 ds_0^2$ ($\rho > 0$) be a conformally changed metric on M_0 , and let $M_1 = (M_0, ds^2)$. Obviously, $\Delta_{M_1} f(x) = 0$.

Choose $\rho(t) = t^{-1} \left(\log \frac{1}{t} \right)^{-\alpha}$. $\frac{1}{2} < \alpha < 1$, we know [2] that M_1 is a complete Riemannian manifold with sectional curvature K(x) satisfying $K(x) \sim -\alpha[(1-\alpha)r(x)]^{-2}$ as $r(x) \to \infty$ where r(x) is the geodesic distance from x to some fixed point in M_1 .

Let $M = M_1 \times T^{n-2}$. We also have $\Delta_M f(x) = 0$. Since [6] $|\nabla_{M_0} f(x)| \leq \frac{C}{t}$,