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1. Introduction

In this paper we consider the following boundary value problem:

wy= (u™,, + (a—z%u el ==L, t=0
wb— L, &) =ull., ) =10 £ =0 (1)
ulz, ) =u,{x) =0 |z| < L

where I > [} is a parameter.

The solution of {1) defines a local dynamical system such thatv=u" € H'(— L, L) .
Moreover, the a -limit set of any bounded orbits is a equilibrium of (1) ; that is, a solution
af

(™ ,. 4 fa—zHu=10 (2]
ul(t+ L) =10 (3)

The problem arises in certain biological populations (See ([71). Recently, some authors
have considered other similar questions, for instance, f{x, u) = f{z)u instead of the (a —
") u in this problem, where f(z) is a step function, see(5]), When f(z, ) —u (]l —u) (u —
a), [4]1 gives a complete discussion. The authors of [5] and (4] have used the standard
phase-energy method. Here in our case, f(x, u) = f(z) ¢ (x) and f(z) is not a contant or
a step function, namely, {2)is nonautonomous. To overcome this difficulty in section 3 we
give some new ideas. Using the symmetricity and monotonicity of solution of (2) and (3)
reduce (2) and (3) to a equivalent operator equation. And using Schauder fixed point
theorem we get the local bifurcation of the nonnegative equilibria of (2) and (3). Finally
wie use Implicit Function Theorem to obtain some further results. We have proved that for
m e (1. 3/2) ., the bifurcation is global, and for m & [3/2, o) . we give a sufficient
condition under which we can extend the local bifurcation. In section 2 we also give some

results about the stable properties of the equilibria.
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2. Comparison and Local Existence Theorem

. Consider the following problem:

(3u 3% (u)

%ﬁ— e =fiw, u) |lz| =L. =0
D Yuxr n=0 t==0

L-H::t.', 0) = u, (x) |z| =L

where @ (u) = |u|"signu, m>1, fiz.v) = (e —z™w, a>0. From P.E. Sacks [1] it
follows that (I} has at least a solution u & L™= (Q) [ C (@ forT =0, Qp = (— L, L} X
(0, Ty, Crandall & Bresis (2] prove the unigueness. We also consider the asymptotic
behaviour of nonnegative solutions of (). Therefore we first consider the stationary
praoblem, that is, the following one:
e {Eu"}”—F (a—2xHu=0 |z|=L
ult Fy =10 w=0

Definitlion. u is called the positive (upper-, lower-) solution, if u==0 forxz € G = (-

L, Ly, u & L7 (L) and sofisfies

_r (u"p,, + (a—ahuplde= (=, =)0
=1

for erery @ & Ci(— L, L).

Lemma 1. Suppose that Z(z) € L'(2), W(z) € L™, and W, + Z=0 holds in the
sense of distributions. Then W_ & L™ (£ .

Proof. Set ' = [§ — L, L — 6], 6 =0, Using mollified operator p,. A <Td . we set u,
= p, #u, thenu,—uin L'ifu &€ L', ash—=07. Since I"u, = (D", (See(8]). we have
We.+ Z,=0. This gives w,, € L' and || W,. | L:i’ |l Z. | .2n ess var W, =
I Waa l o= | Zs || o=~ 1 2 || oo @sh—0. Wy € L7, and || W, || y= =< C,. where C,
independent of the k . So there exists a point 2, &€ [— L&, L — 4§ ], such that

W, (ze) | = |C—W, (—L4& +W,(L—&1/2(L—5 |
<2 (W, + DL —6& <40+ 1) /L, (if §<<L/2)
Then | W, | = | W, (z9 | + ess varW,,
<A, DL | 2]+
So in If, 1 == p<Coo, there exists a subsequence {W,}. (W,), =W.(in L™ . This

A 2.

yields (W, ), W,.Using || W, || === M . where M is independent of £, we at last
get || W, || L= == C . The proof is completed. .

Lemma 2. If u is  a nonnegative solution of (1) ,, then » =" € ", f=a/2 =
1/2m. soin 2, = {u=>0}, u € C*.

Proof. Set v = u™, a = % < (0. 1), then
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