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Abstract. A new approach for reducing error of the volume penalization method is
proposed. The mask function is modified by shifting the interface between solid and
fluid by

√
νη toward the fluid region, where ν and η are the viscosity and the perme-

ability, respectively. The shift length
√

νη is derived from the analytical solution of the
one-dimensional diffusion equation with a penalization term. The effect of the error
reduction is verified numerically for the one-dimensional diffusion equation, Burgers’
equation, and the two-dimensional Navier-Stokes equations. The results show that
the numerical error is reduced except in the vicinity of the interface showing overall
second-order accuracy, while it converges to a non-zero constant value as the number
of grid points increases for the original mask function. However, the new approach is
effective when the grid resolution is sufficiently high so that the boundary layer, whose
width is proportional to

√
νη, is resolved. Hence, the approach should be used when

an appropriate combination of ν and η is chosen with a given numerical grid.

AMS subject classifications: 60-08

Key words: Volume penalization method, immersed boundary method, compact scheme, error
reduction.

∗Corresponding author. Email addresses: wakana@heap.phys.waseda.ac.jp (W. Iwakami),
yuzuru@dragon.ifs.tohoku.ac.jp (Y. Yatagai), hatakeyama@aki.niche.tohoku.ac.jp (N. Hatakeyama),
hattori@fmail.ifs.tohoku.ac.jp (Y. Hattori)

http://www.global-sci.com/ 1181 c©2014 Global-Science Press



1182 W. Iwakami et al. / Commun. Comput. Phys., 16 (2014), pp. 1181-1200

1 Introduction

Flows around solid bodies have been investigated in a wide variety of fields in science
and engineering. Computational fluid dynamics has advantages in both visualizing flow
fields and providing detailed data over experiments. The flows around solid objects are
often calculated using either a body-fitted grid system to impose boundary conditions
or a set of appropriate orthogonal functions which satisfy the boundary conditions to
expand the flow variables. However, if there exist complex-shaped solid bodies or bodies
which move or deform in the flow, it is not easy to generate a body-fitted grid system or
to find a set of orthogonal functions; efficient computation is not possible at low cost by
these methods. The volume penalization (VP) method is one of the alternative methods
to simulate flows in these complicated situations.

The VP method is one of the immersed boundary methods which are classified into
two types: the continuous forcing approach in which an external force term is added to a
continuous equation of motion and the discrete forcing approach in which the force term
is added to a discretized one [13]. The VP method is the former type. One can use
it with the Fourier pseudo-spectral method; many flows in which multiple solid bodies
exist [9,10,14,15], the flows inside rigid boundaries [16,17], and the flows around moving
bodies [11] have been simulated by the VP method. Moreover, the VP method can be
used with Chebyshev pseudo-spectral method, wavelet solvers, and other high-precision
methods [8].

In the VP method, a solid body is regarded as porous medium of low permeability.
There are two types of penalization modeling. One is the L2 penalization: the Navier-
Stokes (N-S) equation is converted to the Darcy equation in the solid body; and the other
is the H1 penalization: the N-S equation is transformed to the Brinkman equation in
the solid body [1, 2]. In the L2 penalization, a damping force term which is called a
penalization term and has a mask function χ and the permeability η is added to the
equation of motion. Usually the step function, which is 0 in the fluid region and 1 in
the solid region, is chosen as χ. The mask function activates the penalization term in the
solid region so that the penalized N-S equation turns into the Darcy equation.

One of the advantages of the VP method is that there are rigorous results about con-
vergence. As permeability tends to zero, the penalized solution converges to the solution
of the original (non penalized) problem with Dirichlet-type boundary conditions, e.g.
no-slip boundary conditions. Angot et al. proved mathematically that the upper bound
for the difference between the solutions of the original and penalized N-S equations, is
O(η1/4) in the fluid region [1]. This upper bound is improved to O(η1/2) by Carbou and
Fabrie [4]. Kevlahan and Ghidaglia [9] considered a stokes flow over a flat plate whose
dynamics is reduced to the one-dimensional diffusion equation and showed analytically
that the error between the original and penalized solutions is O(η1/2) in the fluid region.
Recently, Kadoch et al. applied the VP method to problems with Neumann-type bound-
ary conditions, e.g. no-flux conditions [7]. They draw the same conclusion as Carbou
and Fabrie [4] in the convergence property.


