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Abstract. A new approach to simulation of stationary flows by Direct Simulation
Monte Carlo method is proposed. The idea is to specify an individual time step for
each component of a gas mixture. The approach consists of modifications mainly
to collision phase simulation and recommendations on choosing time step ratios. It
allows lowering the demands on the computational resources for cases of disparate
collision diameters of molecules and/or disparate molecular masses. These are cases
important e.g., in vacuum deposition technologies. Few tests of the new approach
are made. Finally, the usage of new approach is demonstrated on a problem of silver
nanocluster diffusion in argon carrier gas under conditions of silver deposition exper-
iments.
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1 Introduction

The Direct Simulation Monte Carlo (DSMC) method [1] is a standard for the simulation of
nonequilibrium rarefied gas flows described by the Boltzmann equation. This method is
based on tracking individual molecules (simulators), considering them moving indepen-
dently with occasional discrete events of pair collisions applied according to a statistical
model. After the steady state is reached, the average of simulator parameters over many
time steps delivers macroparameters of the flow. The method has three discretization
parameters:
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First, displacement and collision phase are uncoupled to speed up a computation, this
defines the time step parameter ∆t.

Second, a considerably limited, reduced number of simulators is used to simulate a
large number of physical molecules. The symmetry of the Boltzmann equation allows
reducing the number density n of molecules by increasing the collision cross-section σT,
keeping the local mean free path λ unchanged:

n→ n

F
, σT →FσT , λ=

1√
2nσT

,

here F is the number of physical molecules represented by a simulator.

Third, for a reduced number of simulators, collisions can no longer be a point event,
as it should in the Boltzmann equation, so, the simulation area is divided into cells of
linear size h and collision partners are chosen randomly within the same cell, causing
spatial collision separation.

As is said, DSMC is the most practical method for the numerical simulation of
nonequilibrium rarefied gas flows. However, the statistical nature of DSMC forces to
calculate a lot of time steps to collect enough samples to get good statistical averages, as
the noise amplitude is inversely proportional to the square root of the simulated period of
time. When the flow is close to equilibrium, gradients of macroparameters are too small
to resolve. This forces to use modified DSMC [2–5] or even alternative [6, 7] methods to
solve the Boltzmann equation.

Discretization causes distortion of flow parameters and effective transport coeffi-
cients, the error is of second order in cell size and time step, i.e., ∼ (h/λ)2 [8] and
∼ (vC∆t)2 [9] (vC is the local mean collision frequency) and first order in F, i.e., ∼
h/(λN) [10] (N is the mean number of simulators in a cell and λN is invariant on local
density). Simulating a d-dimensional flow of characteristic linear size L and characteristic
mean free path λ, keeping the same distortion, requires ∼(L/λ)d cells and a proportional
number of simulators, these determine demands on computer memory and on number
of operations per time step. With the increase of flow density, the time step has to shrink,
while relaxation of the flow slows down, therefore, the number of time steps to reach
steady state is ∼(L/λ)2. Sometimes reaching a steady state is more costly than collecting
a good average of flow properties. When reaching a steady state is not obvious, conver-
gence detection algorithms have to be used [11].

The majorant collision frequency (MCF) scheme [12] assumes that each possible pair
(i, j) of simulators in a cell has its own collision frequency:

vij =
FσTcr

VC
, (1.1)

here cr is the relative velocity and VC is the cell volume. The algorithm to accomplish this
is as following. First, a value of the majorant collision frequency vmax is chosen in each


