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Abstract. This paper extends the adaptive moving mesh method developed by Tang
and Tang [36] to two-dimensional (2D) relativistic hydrodynamic (RHD) equations.
The algorithm consists of two ”independent” parts: the time evolution of the RHD
equations and the (static) mesh iteration redistribution. In the first part, the RHD
equations are discretized by using a high resolution finite volume scheme on the fixed
but nonuniform meshes without the full characteristic decomposition of the govern-
ing equations. The second part is an iterative procedure. In each iteration, the mesh
points are first redistributed, and then the cell averages of the conservative variables
are remapped onto the new mesh in a conservative way. Several numerical examples
are given to demonstrate the accuracy and effectiveness of the proposed method.
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1 Introduction

Relativistic hydrodynamics plays a major role in many fields of modern physics, e.g.,
astrophysics, nuclear and high-energy physics and, lately, also in condensed matter. A
relativistic description of fluid dynamics should be used whenever matter is influenced
by large gravitational potentials, where a description in terms of the Einstein field theory
of gravity is necessary. It is also necessary in situations where the local velocity of the
flow is close to the light speed in vacuum or where the local internal energy density is
comparable (or larger) than the local rest mass density of the fluid. Alternatively, rela-
tivistic flows are present in numerous astrophysical phenomena from stellar to galactic
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scales, e.g., core collapse super-novae, X-ray binaries, pulsars, coalescing neutron stars
and black holes, micro-quasars, active galactic nuclei, super-luminal jets, and gamma-ray
bursts etc.

The dynamics of the relativistic systems require solving highly nonlinear equations,
rendering the analytic treatment of practical problems extremely difficult. Often studying
them numerically is a possible approach. The first attempt to solve the RHD equations
was made by Wilson in the 1970s [42,43], using an Eulerian explicit finite difference code
with a monotonic transport, depending on the artificial viscosity techniques to handle
shock waves. After that, various numerical methods are developed to solve the RHD
equations. We refer the readers to the review article by Martı́ and Müller [27]. Most
of those schemes are the generalizations of the shock-capturing Godunov-type methods
based on the exact or approximate Riemann solvers. These Riemann solvers either rely on
characteristic decompositions of the Jacobian matrix or not. Eulderink and Mellema [15]
and Falle and Komissarov [16] developed RHD solvers based on the local linearization,
respectively. Balsara [1], Dai and Woodward [8], and Mignone et al. [29] developed two-
shock approximation solver for the RHD system. A flux-splitting method was extended
to the RHDs in [12]. Schneider et al. [32] and Duncan and Hughes [13] presented the HLL
(Harten-Lax-van Leer) method in the context of the RHD equations. An extension of the
HLLC (Harten-Lax-van Leer-Contact) approximate Riemann solver for the RHDs was
presented by Mignone and Bodo [28]. ENO (essentially non-oscillatory) based methods
for the RHD system have been studied by Dolezal and Wong [11] and Del Zanna and
Bucciantini [45].

In practice, solutions to the (nonlinear) RHD equations are frequently smooth in large
fractions of the physical domain but contain sharp transitions or discontinuities in rela-
tively localized regions. In the smooth regions, relatively coarse numerical zoning may
be sufficient to accurately represent the solution, while finer zoning is needed where
sharp transitions occur. Because of this, adaptive mesh strategies are needed. Successful
implementation of the adaptive approaches can improve the accuracy of the numerical
approximation and decrease the computational cost. Adaptive moving mesh methods
have been playing an increasingly important role in many branches of scientific and en-
gineering areas. Up to now, there have been many important progresses in the adaptive
moving mesh methods for partial differential equations, including grid redistribution ap-
proaches based on the variational principle of Winslow [44], Brackbill [2], Brackbill and
Saltzman [3], Ren and Wang [31], and Wang and Wang [41]; moving finite element meth-
ods of Millers [30], and Davis and Flaherty [9]; moving mesh PDEs methods of Russell
et al. [5, 33], Li and Petzold [24], and Ceniceros and Hou [6]; and moving mesh methods
based on the harmonic mapping of Dvinsky [14], and Li, Tang and Zhang [10, 22, 23].
Computational costs of moving mesh methods can be efficiently saved with locally vary-
ing time steps [34]. Balanced monitoring of flow phenomena in moving mesh method is
recently discussed in [39]. We also refer the readers to recent review papers [4, 38] and
references therein.

The paper is organized as follows. Section 2 introduces the governing equations of


