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Abstract. We report an efficient phase field formalism to compute the stress distribu-
tion in polycrystalline materials with arbitrary elastic inhomogeneity and anisotropy.
The dependence of elastic stiffness tensor on grain orientation is taken into account,
and the elastic equilibrium equation is solved using a spectral iterative perturbation
method. We discuss its applications to computing residual stress distribution in sys-
tems containing arbitrarily shaped cavities and cracks (with zero elastic modulus) and
to determining the effective elastic properties of polycrystals and multilayered com-
posites.
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1 Introduction

Phase-field models have been extensively used to study the effect of elastic stresses on mi-
crostructural evolution during solid-to-solid phase transformations (see the reviews [1–3]
for details). However, most of these models approximate the elastic modulus to be ho-
mogeneous. Homogeneous modulus approximation is not a valid assumption when the
microstructures exhibit large elastic inhomogeneity. Examples of elastically inhomoge-
neous materials include multiphase materials in which the constituent phases have dif-
ferent elastic moduli, composites, systems containing cavities and cracks, and polycrys-
talline materials. In the case of polycrystals, the overall elastic stiffness tensor depends
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on the orientation of each grain constituting the polycrystal. As a result, polycrystalline
materials are always associated with an inhomogeneous distribution of elastic moduli.

There have been fewer efforts to model elastically inhomogeneous systems using
phase field models. Leo et al. and Zhu et al. numerically solved the mechanical equilib-
rium equation for elastically inhomogeneous systems using conjugate gradient method [4,
5]. Hu and Chen developed an iterative-perturbation scheme to solve the mechanical
equilibrium equation in elastically inhomogeneous binary alloys [6, 7]. Wang et al. de-
veloped a phase field microelasticity theory to model elastically and structurally inho-
mogeneous solids [8]. Their theory is based on the estimation of strain energy of an
elastically inhomogeneous solid by numerically computing the effective stress free strain
for an equivalent elastically homogeneous system [8, 9].

In this paper we present a phase field model based on the iterative-perturbation
method developed by Hu and Chen [6] to compute the residual stress distribution in
polycrystalline materials. This allows one to compute the equilibrium stress distribution
for any arbitrary structurally and elastically inhomogeneous microstructure using our
method. Furthermore, it will be shown that the effective elastic properties of polycrystals
can be efficiently computed from its response to an applied stress or strain.

2 Formulation and numerical implementation

In the phase-field model developed by Fan and Chen for studying grain growth [10, 11],
a polycrystalline microstructure is described using a set of Q continuous, non-conserved
order parameter fields ηi(r,t) (i=1,··· ,Q). The order parameter fields represent grains of
a given crystallographic orientation. We use a function φ(r,t)=∑i η

2
i (r,t) to distinguish

between the grain interior and the grain boundaries.

In a polycrystalline material, the elastic constants depend on the relative orientation of
different grains constituting the polycrystal and hence are always inhomogeneous. Since
the grains are rotated with respect to a fixed coordinate system, the elastic stiffness tensor
for each grain is obtained by transforming the tensor with respect to the fixed coordinate
system. Let Cijkl represent the stiffness tensor for a single grain in a fixed reference frame.
Then, the position-dependent elastic stiffness tensor for the entire polycrystal in terms of
the order parameter fields is defined as

Cijkl(r)=∑
g

η2
g(r)a

g
ipa

g
jqa

g
kra

g
lsCpqrs, (2.1)

where a
g
ij is the transformation matrix representing the rotation of the coordinate system

defined on a given grain ‘g’ with respect to the fixed reference frame and Cpqrs is the
stiffness tensor of the reference medium. The transformation matrix aij is expressed in


