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Abstract. This article describes a number of velocity-based moving mesh numerical
methods for multidimensional nonlinear time-dependent partial differential equations
(PDEs). It consists of a short historical review followed by a detailed description of a
recently developed multidimensional moving mesh finite element method based on
conservation. Finite element algorithms are derived for both mass-conserving and
non mass-conserving problems, and results shown for a number of multidimensional
nonlinear test problems, including the second order porous medium equation and the
fourth order thin film equation as well as a two-phase problem. Further applications
and extensions are referenced.
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1 Introduction

This paper reviews some velocity-based moving mesh numerical methods for nonlinear
time-dependent partial differential equations (PDEs). Numerous physical and biological
applications of mathematics are governed by these PDEs which often exhibit complex
behaviour that is difficult to predict in advance. For example, problems may be posed on
moving domains which are determined implicitly by the solution of the equations.

Many PDE problems possess analytic properties, for example the invariance of cer-
tain integrals or the existence of solutions with a specific structure. The construction of
numerical approximations which preserve such properties is one of the aims of geomet-
ric integration [28–30]. Where such a priori knowledge concerning the qualitative nature
of the solution is available this may be used to guide effective computational schemes.

We shall be concerned with moving mesh numerical methods, which have the ability
to adjust to the evolution of the solution (in order to track implicit moving boundaries
and singularities for example), as well as to resolve sharp features and respect global
properties. Such methods are therefore an attractive choice for problems of this type. The
argument is reinforced in the case of scale-invariant problems for which both dependent
and independent variables are strongly coupled. Fixed meshes are unable to replicate
scale-invariance because they are time-independent. The coupling of independent and
dependent variables is a recurrent theme in this paper and is used later on to motivate
the development of a solution-adaptive moving mesh finite element method based on
conservation.

Velocity-based moving mesh methods (also known as Lagrangian methods or in a wider
context Arbitrary Lagrangian Eulerian (ALE) methods) rely on the construction of suitable
velocities at points of the moving domain at each instant of time, as opposed to the con-
struction of time-dependent mappings from a fixed computational domain to the moving
domain [30, 35, 134]. The latter construction can be rather cumbersome in more than one
dimension, and in any case the mappings need to be converted into velocities for incor-
poration into a time-dependent PDE. A velocity-based description, on the other hand,
requires no formal reference to the computational domain and has the advantage that
the velocity is available directly for incorporation into the time-dependent PDE. The evo-
lution of the Lagrangian coordinate x̂(t) at time t follows from the velocity v(t,x) by
integrating the ODE

dx̂(t)

dt
=v(t,x̂(t)), (1.1)

where x̂(t) coincides instantaneously with the Eulerian coordinate x at the initial time.

The layout of the paper is as follows. In the next section (Section 2) we review time-
dependent PDEs stated in both differential and integral form. Initially a fixed frame


