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Abstract. This paper is concerned with a new version of the Osher-Solomon Riemann
solver and is based on a numerical integration of the path-dependent dissipation ma-
trix. The resulting scheme is much simpler than the original one and is applicable to
general hyperbolic conservation laws, while retaining the attractive features of the orig-
inal solver: the method is entropy-satisfying, differentiable and complete in the sense
that it attributes a different numerical viscosity to each characteristic field, in particular
to the intermediate ones, since the full eigenstructure of the underlying hyperbolic sys-
tem is used. To illustrate the potential of the proposed scheme we show applications
to the following hyperbolic conservation laws: Euler equations of compressible gas-
dynamics with ideal gas and real gas equation of state, classical and relativistic MHD
equations as well as the equations of nonlinear elasticity. To the knowledge of the au-
thors, apart from the Euler equations with ideal gas, an Osher-type scheme has never
been devised before for any of these complicated PDE systems. Since our new general
Riemann solver can be directly used as a building block of high order finite volume
and discontinuous Galerkin schemes we also show the extension to higher order of
accuracy and multiple space dimensions in the new framework of PNPM schemes on
unstructured meshes recently proposed in [9].
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1 Introduction

Finite volume and discontinuous Galerkin methods for hyperbolic conservation laws re-
quire a numerical flux. There are essentially two approaches to obtain the flux, the cen-
tered or symmetric approach and the upwind or Godunov approach. Schemes derived
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from the centered approach do not explicitly use wave propagation information and are
much simpler and general than schemes derived from the upwind approach. Among the
centered schemes we have for example the original Lax-Friedrichs scheme [29] as well as
the FORCE scheme of Billet and Toro [44] and its multi-dimensional extensions [3,12,45].
An exhaustive overview of existing Riemann solvers can be found in [43], for example.
The upwind methods use explicitly wave propagation information via the solution of
the local Riemann problem, solved exactly or approximately, resulting in more complex
schemes and restricted to systems for which the Riemann problem can be solved. How-
ever, upwind schemes are more accurate than centered schemes and are to be preferred
when the appropriate upwind information is available. This is patently evident when
attempting to capture waves associated with linearly degenerated fields, such as slip
surfaces and material interfaces. This is much more challenging than resolving non-
linear waves such as shock waves. The numerical diffusion of centered schemes, even
if high-order extensions are used, can become unacceptable as time evolves. However it
is important to clarify that not all upwind methods will resolve waves associated with
linearly degenerated fields equally well. It rather depends on the particular Riemann
solver used. This calls for a distinction between complete Riemann solvers and incomplete
Riemann solvers. Solvers in the first class have an underlying wave model that contains
all the characteristic fields of the exact Riemann solver of Godunov [20]. Incomplete
solvers adopt reduced wave models and are usually based on the largest signal speeds
present in the system. Classical examples of incomplete Riemann solvers are the Ru-
sanov scheme [37], which has a one-wave model, and the HLL solver [25], which has a
two-wave model, and its extensions [17, 46]. Another useful distinction is a linear solver
and a nonlinear solver. Linearized solvers [35] require explicit entropy fixes and fail for
low density flows. Thus the ideal Riemann solver is non-linear and complete.

The Osher-Solomon scheme [31] is a non-linear and complete Riemann solver. Ad-
ditional attractive features of the scheme are robustness, entropy satisfaction, good be-
havior for slowly-moving shocks and smoothness (differentiability with respect to its
arguments); properties that make it very attractive to the aeronautical community. The
Osher-Solomon method begins from the assumption that the flux can be split into a posi-
tive part and a negative part, and that both components are associated with correspond-
ing Jacobian matrices with positive or zero eigenvalues and negative or zero eigenvalues,
respectively. The proposed numerical flux then involves computing path dependent in-
tegrals in phase-space. In order to evaluate the integrals analytically Osher and Solomon
consider a path that is a union of disjoint local paths k, assumed to be tangential to a
corresponding eigenvector. Then the approach also requires intermediate states k−1 and
k which are joined by the partial path k. Moreover, for a genuinely non-linear field one
generally requires, in addition, a local sonic state. To find the correct intermediate states
and potential sonic states one would effectively have to solve the Riemann problem an-
alytically with an exact Riemann solver, which would make the approach unfeasible in
practice, since with the exact Riemann solver at hand, one could directly apply the Go-
dunov flux [20]. For this purpose Osher and Solomon assume a reduced solver composed


