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Abstract. The aim of the present work is to develop a general formalism to derive
staggered discretizations for Lagrangian hydrodynamics on two-dimensional unstruc-
tured grids. To this end, we make use of the compatible discretization that has been ini-
tially introduced by E. J. Caramana et al., in J. Comput. Phys., 146 (1998). Namely, mo-
mentum equation is discretized by means of subcell forces and specific internal energy
equation is obtained using total energy conservation. The main contribution of this
work lies in the fact that the subcell force is derived invoking Galilean invariance and
thermodynamic consistency. That is, we deduce a general form of the sub-cell force so
that a cell entropy inequality is satisfied. The subcell force writes as a pressure con-
tribution plus a tensorial viscous contribution which is proportional to the difference
between the nodal velocity and the cell-centered velocity. This cell-centered velocity is
a supplementary degree of freedom that is solved by means of a cell-centered approx-
imate Riemann solver. To satisfy the second law of thermodynamics, the local subcell
tensor involved in the viscous part of the subcell force must be symmetric positive
definite. This subcell tensor is the cornerstone of the scheme. One particular expres-
sion of this tensor is given. A high-order extension of this discretization is provided.
Numerical tests are presented in order to assess the efficiency of this approach. The
results obtained for various representative configurations of one and two-dimensional
compressible fluid flows show the robustness and the accuracy of this scheme.
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1 Introduction

In Lagrangian hydrodynamics methods, a computational cell moves with the flow veloc-
ity. In practice, this means that the cell vertices move with a computed velocity, the cell
faces being uniquely specified by the vertex positions. Thus, Lagrangian methods can
capture contact discontinuity sharply in multi-material fluid flows. However, in the La-
grangian framework, one has to discretize not only the gas dynamics equations but also
the vertex motion in order to move the mesh. Moreover, the numerical fluxes of the phys-
ical conservation laws must be determined in a compatible way with the vertex velocity
so that the geometric conservation law (GCL) is satisfied, namely the rate of change of a
Lagrangian volume has to be computed coherently with the node motion. This critical
requirement is the cornerstone of any Lagrangian multi-dimensional scheme.

The most natural way to solve this problem employs a staggered discretization in
which position, velocity and kinetic energy are centered at points, while thermodynamic
variables (density, pressure and specific internal energy) are defined within cells. The
dissipation of kinetic energy into internal energy through shock waves is ensured by an
artificial viscosity term. Since the seminal works of von Neumann and Richtmyer [33],
and Wilkins [34], many developments have been made in order to improve the accuracy
and the robustness of staggered hydrodynamics [8, 11, 12]. More specifically, the con-
struction of a compatible staggered discretization leads to a scheme that conserves total
energy in a rigorous manner [9, 10].

An alternative to the previous discretizations is to derive a Lagrangian scheme based
on the Godunov method [18]. In the Godunov-type method approach, all conserved
quantities, including momentum, and hence cell velocity, are cell-centered. The cell-
face quantities, including a face-normal component of the velocity, are available from
the solution of an approximate Riemann problem at each cell face. However, it remains
to determine the vertex velocity in order to move the mesh. In the early work [1] the
flux computation was not compatible with the node displacement, and hence the GCL
was not satisfied. This incompatibility generated additional spurious components in the
vertex velocity field whose correction required expensive treatment [17]. An important
achievement concerning the compatibility between flux discretization and vertex velocity
computation has been introduced in [15,27]. In these papers, the authors present schemes
in which the interface fluxes and the node velocity are computed coherently thanks to an
approximate Riemann solver located at the nodes. This original approach leads to first-
order conservative schemes which satisfy a local semi-discrete entropy inequality. The
multi-dimensional high-order extension of these schemes are developed in [13,25,26,28].

The staggered discretization of variables (kinematic variables located at nodes, ther-
modynamic ones at cell centers) allows the scheme to fulfill naturally the GCL compati-
bility requirement and at the same time to construct a discrete divergence operator. The
discretizations of momentum and specific internal energy are derived from each other
by use of the important concepts of subcell mass, subcell force and total energy con-
servation [10]. This compatible hydrodynamics algorithm is thus designed to conserve


