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Abstract. This paper presents a novel high-order space-time method for hyperbolic
conservation laws. Two important concepts, the staggered space-time mesh of the
space-time conservation element/solution element (CE/SE) method and the local dis-
continuous basis functions of the space-time discontinuous Galerkin (DG) finite ele-
ment method, are the two key ingredients of the new scheme. The staggered space-
time mesh is constructed using the cell-vertex structure of the underlying spatial mesh.
The universal definitions of CEs and SEs are independent of the underlying spatial
mesh and thus suitable for arbitrarily unstructured meshes. The solution within each
physical time step is updated alternately at the cell level and the vertex level. For
this solution updating strategy and the DG ingredient, the new scheme here is termed
as the discontinuous Galerkin cell-vertex scheme (DG-CVS). The high order of accu-
racy is achieved by employing high-order Taylor polynomials as the basis functions
inside each SE. The present DG-CVS exhibits many advantageous features such as
Riemann-solver-free, high-order accuracy, point-implicitness, compactness, and ease
of handling boundary conditions. Several numerical tests including the scalar advec-
tion equations and compressible Euler equations will demonstrate the performance of
the new method.
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1 Introduction

To numerically solve hyperbolic conservation laws, many methods including the classic
finite difference and finite volume methods, discontinuous Galerkin (DG) method [1, 6,
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9, 17] and the spectral volume method [31] use exact or approximate Riemann solvers
to provide inter-cell fluxes. Since Riemann fluxes are based on the local characteristic
structure of the governing equations, they are expected to provide the correct fluxes and
stabilize the numerical methods. However, in the actual implementation, Riemann fluxes
are dependent on trace values which are obtained numerically. Riemann fluxes computed
this way may deviate from the actual physical values. This might explain why many
(approximate) Riemann solvers capable of resolving contact discontinuities as well as
shocks often exhibit some pathological phenomena among which the so-called carbuncle
problem [10, 21, 24] is the most notorious one. Instead of finding the ”cure” for such
phenomena, some researchers resort to the so-called Riemann-solver-free approaches to
avoid such phenomena. Examples include the space-time Conservation Element and
Solution Element (CE/SE) method [3, 5], the Nessyahu-Tadmor (NT) scheme [19] and its
improved variant [12, 15]. Indeed, these schemes are often referred to as central schemes
in contrast to the Riemann-solver-based upwind ones. These central schemes are free
of the carbuncle problem and produce entropy-satisfying solutions. In addition, since
no Riemann solvers are involved in these central schemes, computation of numerical
fluxes do not need the eigen-structure information of the system, which is attractive in
governing equations where the eigen structure is not explicitly or easily known.

Numerical methods are required to be of high-resolution in both space and time such
that the complex and possibly transient physical features in the simulated flow field are
not overly smeared out during the long-time simulation. High-resolution means that
the numerical dissipative error and dispersive error inherent to the scheme are small
compared to the corresponding physical ones. Traditionally, the second-order accurate
schemes were considered as high-resolution schemes. This was true when compared to
the dissipative first order methods. Second order schemes have been extensively adopted
in many commercial packages due to their simpleness and acceptable accuracy for many
engineering applications. However, there are also many applications where second order
methods are not adequate. For example, in the field of aeroacoustics, small disturbances
(acoustics) often co-exist with strong discontinuities (e.g., shock waves), second order
schemes tend to smear out the small disturbances while capturing strong shocks. Other
examples include the wake of rotor blades and the flow field around flapping wings of
Micro Aerial Vehicles (MAVs) where the flow is highly unsteady and vortex abundant.
In this situation, numerical schemes of higher resolution are required to capture the tran-
sient vortices.

High resolution methods usually employ high-order (higher than second order)
spatial and temporal discretization. Various high-order methods such as the WENO
(weighted essentially nonoscillatory) [14] scheme, the discontinuous Galerkin (DG) fi-
nite element method [7], the spectral element method (SEM) [22] and the spectral vol-
ume method (SVM) [31] have been proposed in the literature and studied by many re-
searchers. High resolution methods may not be of high order in terms of truncation error.
An example is the aforementioned CE/SE method [3, 5] that yields high-resolution solu-
tions though it is designed to be second order accurate in both space and time. Solvers


