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Abstract. A new adaptive cell average spectral element method (SEM) is proposed
to solve the time-dependent Wigner equation for transport in quantum devices. The
proposed cell average SEM allows adaptive non-uniform meshes in phase spaces to
reduce the high-dimensional computational cost of Wigner functions while preserving
exactly the mass conservation for the numerical solutions. The key feature of the pro-
posed method is an analytical relation between the cell averages of the Wigner function
in the k-space (local electron density for finite range velocity) and the point values of
the distribution, resulting in fast transforms between the local electron density and lo-
cal fluxes of the discretized Wigner equation via the fast sine and cosine transforms.
Numerical results with the proposed method are provided to demonstrate its high ac-
curacy, conservation, convergence and a reduction of the cost using adaptive meshes.
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1 Introduction

Ever since its invention in 1932 by Wigner in [1], the Wigner equation has found appli-
cations in many physical fields, such as optics, information theory and statistical physics
and has constituted a new formulation of quantum mechanics [2,3]. The most appealing
characteristic of the Wigner equation is that it describes the evolution of quantum states
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in the same way as the Boltzmann equation does for classical systems. Both of them are
defined in a phase space and a physical interpretation can be given to terms appearing
in their dynamical equations. Although it is not a real probability distribution function
due to possible negative values as a result of the Heisenberg uncertainty principle, the
Wigner function serves the role of a distribution [4,5], for example, in calculating number
densities, current densities and etc. Using the Wigner equation to investigate quantum
transport has become more popular [6,7] when the quantum behavior of semiconductor
devices can not be neglected as their size is down to nano-scales.

Frensley succeeded in simulating the quantum transport in a resonant tunneling diode
(RTD) by solving the Wigner equation with a first-order upwind scheme finite difference
method (FDM) [8,9]. Since then, several second-order FDMs have been used [10] (for a
detailed summary about FDMs for the Wigner equation, please refer to [11,12]). It has
been shown that general FDMs are not very accurate for transient Wigner simulations
and questions have been raised about the effect of the finite difference discretization of
inflow /outflow boundary conditions proposed by Frensley in [9]. Moreover, in order to
include the space charge effect, the Wigner equation should be coupled with a Poisson
equation [13, 14] and a self-consistent iteration is needed to solve the coupled system.
Application of such models with FDM solvers can be found in [15-17] where the time-
independent Wigner-Poisson system is considered. Recently, the Wigner function is ex-
tended to particle modeling accounting for various kinds of scatterings [18], where the
Boltzmann equation and the Wigner equation are coupled in a unified framework so that
simulation of actual quantum transport can be achieved by Monte Carlo methods [19,20].

In [21,22] a spectral method based on plane waves is used to discretize the transient
Wigner equation in the k-space while FDMs are used in the x-space. In [23,24] an opera-
tor splitting method is used to calculate the coupled Wigner-Poisson system. The reason
for using plane wave spectral methods is that the plane waves are the eigenfunctions of
the pseudo-differential operator associated with the Wigner potentials. However, there
are several issues in approximating the Wigner distributions in the k-space with peri-
odic plane waves. The periodization in the k-space produces a numerical solution which
resides in a different function space (periodic function) other than the original Wigner
function space L?(—o0,00) and more importantly, creates an unphysical interaction of
the Wigner distribution with its periodic image frequencies in the k-space. Mathemati-
cally speaking, we need to handle carefully the infinite integral with respect to the dual
variable y appearing in the pseudo-differential operator Oy [f] of (2.4). In [25,26], af-
ter assuming that J?(x,y,t) defined in (2.5) has a compact support in the y-space with a
truncated domain in the y-space as [—1/(2Ak),1/(2Ak)], the authors showed that the
semi-discretized Wigner equation—finite difference discretization in the k-space in a uni-
form mesh-is well-posed and approaches the continuous problem when the mesh size
Ak goes to zero.

Our main objective in this paper is to reduce the cost of computing the Wigner distri-
bution in high-dimensional phase spaces. For this purpose, adaptive meshes will be our
approach which concentrates the computational resources in regions of localized electron



