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Abstract. Discontinuous Galerkin (DG) methods are a class of finite element methods
using discontinuous basis functions, which are usually chosen as piecewise polynomi-
als. Since the basis functions can be discontinuous, these methods have the flexibility
which is not shared by typical finite element methods, such as the allowance of ar-
bitrary triangulation with hanging nodes, less restriction in changing the polynomial
degrees in each element independent of that in the neighbors (p adaptivity), and local
data structure and the resulting high parallel efficiency. In this paper, we give a general
review of the local DG (LDG) methods for solving high-order time-dependent partial
differential equations (PDEs). The important ingredient of the design of LDG schemes,
namely the adequate choice of numerical fluxes, is highlighted. Some of the applica-
tions of the LDG methods for high-order time-dependent PDEs are also be discussed.
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1 Overview

1.1 Brief introduction of the discontinuous Galerkin method

The discontinuous Galerkin (DG) method that we discuss in this paper is a class of finite
element methods using a discontinuous piecewise polynomial space for the numerical
solution and the test functions in the spatial variables, coupled with explicit or implicit
nonlinearly stable high order time discretization. These methods have found their way
into the main stream of computational fluid dynamics and other areas of applications.

The first DG method was introduced in 1973 by Reed and Hill [77], in the framework
of neutron transport, i.e. a time independent linear hyperbolic equation. It was later
developed for solving nonlinear hyperbolic conservation laws with first derivatives by
Cockburn et al. in a series of papers [29,35,37,39], in which they have established a frame-
work to easily solve nonlinear time dependent problems, such as the Euler equations in
compressible gas dynamics, using explicit, nonlinearly stable high order Runge-Kutta
time discretizations [85] and DG discretization in space with exact or approximate Rie-
mann solvers as interface fluxes and total variation bounded (TVB) nonlinear limiters [82]
to achieve non-oscillatory properties for strong shocks.

Since the basis functions can be discontinuous, the DG methods have certain flexibil-
ity and advantage, such as,

• It can be easily designed for any order of accuracy. In fact, the order of accuracy can
be locally determined in each cell.

• It is easy to handle complicated geometry and boundary conditions. It can be used
on arbitrary triangulations, even those with hanging nodes.

• It is local in data communications. The evolution of the solution in each cell needs
to communicate only with its immediate neighbors, regardless of the order of ac-
curacy. The methods have high parallel efficiency, usually more than 99% for a
fixed mesh, and more than 80% for a dynamic load balancing with adaptive meshes
which change often during time evolution, see, e.g. [12, 78].

• There is provable cell entropy inequality and L2 stability, for arbitrary scalar equa-
tions in any spatial dimension and any triangulation, for any order of accuracy,
without limiters [60].

• It is at least (k+ 1
2)-th order accurate, and often (k+1)-th order accurate in L2 norm

for smooth solutions when piecewise polynomials of degree k are used, regardless
of the structure of the meshes.

• It is flexible to h-p adaptivity. A very good example to illustrate the capability of
the DG method in h-p adaptivity, efficiency in parallel dynamic load balancing, and


