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Abstract. We present a simple and efficient strategy for the acceleration of explicit Eu-
lerian methods for multidimensional hyperbolic systems of conservation laws. The
strategy is based on the Galilean invariance of dynamic equations and optimization of
the reference frame, in which the equations are numerically solved. The optimal refer-
ence frame moves (locally in time) with the average characteristic speed of the system,
and, in this sense, the resulting method is quasi-Lagrangian. This leads to the accelera-
tion of the numerical computations thanks to the optimal CFL condition and automatic
adjustment of the computational domain to the evolving part of the solution. We show
that our quasi-Lagrangian acceleration procedure may also reduce the numerical dis-
sipation of the underlying Eulerian method. This leads to a significantly enhanced
resolution, especially in the supersonic case. We demonstrate a great potential of the
proposed method on a number of numerical examples.
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1 Introduction

We study numerical methods for hyperbolic systems of conservation laws, which, in the
one-dimensional (1-D) case, read:

ut+f(u)x =0, (1.1)

where u(x,t):=(u(1)(x,t),u(2)(x,t),··· ,u(N)(x,t))T is an N-dimensional vector of unknowns
and f(u(x,t)) := ( f (1)(u(x,t)), f (2)(u(x,t)),··· , f (N)(u(x,t)))T is the flux function. We re-
strict our consideration to initial value problems (IVP) and initial-boundary value prob-
lems with periodic boundary conditions.
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There are two big classes of the numerical methods for (1.1): Eulerian and Lagrangian
ones. The main advantage of Eulerian methods is that they employ stationary spatial
grids, which makes numerical flux approximation relatively easy. In the Lagrangian
framework, the grid moves together with the medium, which typically leads to a very
high resolution of contact waves, but makes the computation of numerical fluxes sub-
stantially more involved.

Another drawback of Lagrangian methods is a lack of control of the developed grid
structure: the grid, which is moving with the fluid, may become highly irregular. This
would affect both the efficiency of the method and its accuracy. One of the ways to
overcome this difficulty is to use ALE methods (see, e.g., [1,16,19] and references therein),
in which the computed solution is projected onto the regular grid after each time step
or after every few time steps so that one makes sure that the mesh does not become
highly irregular. Another way of fixing the problem of irregular grid formation while
enjoying the main advantage of Lagrangian methods—automatic adaptivity of the grid
to the structure of the computed solution—is to use the adaptive moving mesh methods
(see, e.g., [6, 7, 15, 22] and references therein). In these methods, the mesh is moving not
with the fluid, but according to a moving mesh PDE, [6,7,22], or the estimated local errors
in the computed solution, [15].

In this paper, we only study Eulerian methods and focus on two specific issues: their
efficiency and numerical dissipation. It is well-known that the CFL condition, related to
the spectral radius of the Jacobian ∂f/∂u, is a fundamental stability restriction on the size
of time steps in Eulerian methods. We propose a general strategy for reduction of the CFL
number for any given Eulerian method. The main idea is to use the Galilean invariance of
the system (1.1), which allows one to choose, at each time step, the reference frame with
the least restrictive CFL condition. The entire mesh is then shifted to stay in the selected
frame. Notice, however, that unlike the case of Lagrangian or moving mesh methods, the
structure of the mesh does not change at all by the proposed mesh shift.

In a nutshell, the strategy works as follows. At each time step, we add a linear advec-
tion term −σux to the left-hand side of (1.1) and solve the resulting system

ut+f(u)x−σux =0, (1.2)

where σ is a constant. Obviously, solutions of (1.2) are obtained from the corresponding
solutions of (1.1) by the change of variables x→x−σt. However, the constant σ provides
us with an additional degree of freedom, and a wise choice of σ may help to improve
both efficiency and resolution, achieved by the numerical method applied to (1.2) instead
of (1.1). Our approach can be viewed as quasi-Lagrangian since σ is chosen so that the
reference frame moves at the average characteristic velocity, as quantified in Section 2.
We note that the proposed method is not a moving mesh method, but rather a “moving
framework” one. It resembles a more sophisticated hybrid Eulerian-Lagrangian method
from [24]. However, unlike the method from [24], our approach retains the simplicity
of Eulerian methods. We would also like to mention that adding the linear convection
term −σux as it is done in (1.2) resembles the artificial wind method from [21]. However,


