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Abstract. This paper presents a review of the current state-of-the-art of numerical
methods for stochastic computations. The focus is on efficient high-order methods
suitable for practical applications, with a particular emphasis on those based on gen-
eralized polynomial chaos (gPC) methodology. The framework of gPC is reviewed,
along with its Galerkin and collocation approaches for solving stochastic equations.
Properties of these methods are summarized by using results from literature. This pa-
per also attempts to present the gPC based methods in a unified framework based on
an extension of the classical spectral methods into multi-dimensional random spaces.
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1 Introduction

The purpose of this paper is to present an overview of the recent development of nu-
merical methods for stochastic computations, with a focus on fast algorithms suitable for
large-scale complex problems. This field has received an increasing amount of attention
recently and is developing at a fast pace with new results emerging as the paper is un-
der writing. Therefore this paper is not an attempt to present an exhaustive review of
all available results, which is a goal almost impossible to achieve. The focus is rather on
the popular methods based generalized polynomial chaos (gPC) methodology. We will
present the framework and properties of the methods by using (almost) exclusively pub-
lished work and demonstrate that the methods can be considered as a natural extension
of deterministic spectral methods into random spaces.

1.1 Uncertainty quantification

The ultimate objective of numerical simulations is to predict physical events or the be-
haviors of engineered systems. Extensive efforts have been devoted to the development
of accurate numerical algorithms so that simulation predictions are reliable in the sense
that numerical errors are well under control and understood. This has been the primary
goal of numerical analysis, which remains an active research branch. What has been con-
sidered much less in the classical numerical analysis is the understanding of impacts of
errors, or uncertainty, in “data” such as parameter values, initial and boundary condi-
tions.

The goal of uncertainty quantification (UQ) is to investigate the impact of such errors
in data and subsequently to provide more reliable predictions for practical problems.
This topic has received an increasing amount of attention in the past years, especially in
the context of complex systems where mathematical models can serve only as simplified
and reduced representations of the true physics. Although many models have been suc-
cessful in revealing quantitative connections between predictions and observations, their
usage is constrained by our ability of assigning accurate numerical values to various pa-
rameters in the governing equations. Uncertainty represents such variability in data and
is ubiquitous because of our incomplete knowledge of the underlying physics and/or
inevitable measurement errors. Hence in order to fully understand simulation results
and subsequently the true physics, it is imperative to incorporate uncertainty from the
beginning of the simulations and not as an afterthought.

1.1.1 Burgers’ equation: An illustrative example

Instead of engaging in an extensive discussion on the significance of UQ, which there are
many, let us demonstrate the impact of uncertainty via a simple example of the viscous
Burgers’ equation,

Ut Ully =Vily,, x€[—1,1], (1.1)
u(-1)=1, u(l)=-1,



