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Abstract. A fourth-order finite difference method is proposed and studied for the
primitive equations (PEs) of large-scale atmospheric and oceanic flow based on mean
vorticity formulation. Since the vertical average of the horizontal velocity field is
divergence-free, we can introduce mean vorticity and mean stream function which are
connected by a 2-D Poisson equation. As a result, the PEs can be reformulated such that
the prognostic equation for the horizontal velocity is replaced by evolutionary equa-
tions for the mean vorticity field and the vertical derivative of the horizontal velocity.
The mean vorticity equation is approximated by a compact difference scheme due to
the difficulty of the mean vorticity boundary condition, while fourth-order long-stencil
approximations are utilized to deal with transport type equations for computational
convenience. The numerical values for the total velocity field (both horizontal and
vertical) are statically determined by a discrete realization of a differential equation at
each fixed horizontal point. The method is highly efficient and is capable of produc-
ing highly resolved solutions at a reasonable computational cost. The full fourth-order
accuracy is checked by an example of the reformulated PEs with force terms. Addi-
tionally, numerical results of a large-scale oceanic circulation are presented.
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1 Introduction

The primitive equations (PEs) stand for fundamental governing equations for large-scale
atmospheric and oceanic flow. This system is derived from the 3-D incompressible Navier-
Stokes equations (NSEs) under Boussinesq assumption that density variation is neglected
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except in the buoyancy term, combined with hydrostatic approximation for the vertical
momentum equation. See a detailed derivation in J. Pedlosky [24], R. Cushman [10],
J. L. Lions, R. Temam and S. Wang [18–22], etc.

In the PE system, the pressure gradient, the hydrostatic balance, are coupled together
with the incompressibility of the three-dimensional velocity field. In addition, there is
no momentum equation for the vertical velocity since it is replaced by the hydrostatic
balance. Consequently, the vertical velocity is determined by the horizontal velocity field
via an integration formula of its divergence. As a result, the degree of nonlinearity of
the primitive equations is even higher than that of the usual 3-D NSEs, due to lack of
regularity for the vertical velocity. This nonlinearity is one of the main difficulties of the
3-D PEs, in both the PDE level and numerical analysis.

There have been numerous papers on the PDE analysis for the PEs (for example, see
[2, 3, 6, 14, 16–19]). In those papers the system is proven to be well-posed. Regarding the
numerical issues, some schemes based on velocity-pressure formulation were introduced
and analyzed in recent articles. In [27], J. Shen and S. Wang discuss a numerical method
based on a spectral Stokes solver. In [26] by R. Samelson, R. Temam, C. Wang and S.
Wang, a numerical scheme in terms of the surface pressure Poisson equation formulation
is proposed, and the convergence analysis of the scheme using a 3-D MAC (marker and
cell) grid is established. Some relevant numerical work can also be found in [11, 30, 31],
etc.

It is well-known that for 2-D NSEs, the introduction of the vorticity-stream function
formulation is highly beneficial numerically and leads to the following four distinct fea-
tures: (1) the vorticity and stream function are related by a kinematic Poisson equation,
(2) the pressure variable is eliminated, (3) the dynamical equation is replaced by the vor-
ticity transport equation, and (4) the velocity field is recovered by the kinematic relation-
ship and the incompressibility is automatically enforced. We refer to [12, 13, 34] for an
extensive discussion of computational methods based on local vorticity boundary con-
ditions. In these approaches, the Neumann boundary condition for the stream function
(which comes from the no-slip boundary condition for the velocity) is converted into a
local vorticity boundary formula, using the kinematic relationship between the stream
function and vorticity. Such an approach can be very efficiently implemented by explicit
temporal discretization.

On the other hand, the development of a corresponding vorticity formulation for 3-
D geophysical flow has not been as well studied. In the context of the 3-D PEs, since
the leading behavior is two-dimensional by an asymptotic description of atmosphere
and ocean, the above methodology can be applied in a similar, yet more tricky way. In
particular, the above-mentioned four distinct features are still reflected in our vorticity
formulation and numerical method as follows.

First, the averaged horizontal velocity field in vertical direction is divergence-free,
namely (2.6) and (2.7) below, due to the incompressibility of the flow and the vanishing
vertical velocity at the top and bottom. This allows the concept of a mean vorticity and
mean stream function to be introduced so that the kinematic relationship between the


