BIFURCATION ANALYSIS AND COMPUTATION OF DOUBLE TAKENS-BOGDANOV POINT IN Z_2 -EQUIVARIABLE NONLINEAR EQUATIONS*

Yang Zhonghua (杨忠华) Zhou Wei(周 尉)

Abstract The paper deals with the computation and bifurcation analysis of double Takens-Bogdanov point (u^0, Λ^0) (in short, DTB point) in the Z_2 -equivariable nonlinear equation $f(u, \Lambda) = 0, f: U \times R^4 \to V$, where U and V are Banach spaces, parameters $\Lambda \in R^4$. At (u^0, Λ^0) , the null space of f_u^0 has geometric multiplicity 2 and algebraic multiplicity 4. Firstly a regular extended system for computing DTB point is proposed. Secondly, it is proved that there are four branches of singular points bifurcated from DTB point: two paths of STB points, two paths of TB-Hopf points. Finally, the numerical results of one dimensional Brusselator equations are given to show the effectiveness of our theory and method.

Key words Z_2 -equivariance, Takens-Bogdanov point, Hopf point, extended system. AMS(2000)subject classifications 58F14

1 Introduction

The singular points in Z_2 -equivariable nonlinear equations have been studied in [1]-[6]. The purpose of the paper is to discuss the computation of DTB point in Z_2 -equivariable nonlinear equations with four parameters and relative properties.

Consider the \mathbb{Z}_2 -equivariable nonlinear equation with four parameters

$$f(u, \lambda, \alpha, \beta, \gamma) = 0, \qquad f: U \times R^4 \to V,$$
 (1.1)

where U and V are Banach spaces, f is a smooth Fredholm operator with index zero satisfying

^{*} Supported by National Natural Science Foundation of China(19971057), Shanghai Development Foundation for Science and Technology(No.00JC14057), Shanghai Science and Technology Committee(No.03QA14036) and Doctoral Program of National Higher Education. Received: Dec. 25, 2002.

 Z_2 -equivariance. There is an $s \in L(V) \cap L(U)$, such that

$$s \neq I, s^2 = I, f(su, \lambda, \alpha, \beta, \gamma) = sf(u, \lambda, \alpha, \beta, \gamma), \forall (u, \lambda, \alpha, \beta, \gamma) \in U \times R^4.$$

It is well known that the presence of Z_2 -equivariance implies the decomposition of U ,V and their dual space U', V'

$$U = U_s \oplus U_a, V = V_s \oplus V_a,$$

$$U' = U'_s \oplus U'_a, V' = V'_s \oplus V'_a,$$

where

$$\begin{split} U_s &= \{u \in U, su = u\}, U_a = \{u \in U, su = -u\}, \\ V_s &= \{v \in V, sv = v\}, V_a = \{v \in V, sv = -v\}, \\ U_s^{'} &= \{\psi \in U^{'}, \psi s = \psi\}, U_a^{'} = \{\psi \in U^{'}, \psi s = -\psi\}, \\ V_s^{'} &= \{\psi \in V^{'}, \psi s = \psi\}, V_a^{'} = \{\psi \in V^{'}, \psi s = -\psi\}. \end{split}$$

It is easy to check

$$\psi u = 0$$
, when $\psi \in U'_s$, $u \in U_a$; or $\psi \in U'_a$, $u \in U_s$.

Fixing γ ,(1.1) becomes nonlinear equation with three parameters λ , α , β .

Definition 1.1 $(u_0, \lambda_0, \alpha_0, \beta_0)$ is called a STB1 point of (1.1) if

$$f(u_0, \lambda_0, \alpha_0, \beta_0) = 0, u_0 \in U_s,$$
 (1.2a)

$$N(f_u^0) = \operatorname{span}(\phi_s, \phi_a), \phi_s \in U_s, \phi_a \in U_a, \tag{1.2b}$$

$$R(f_u^0) = \{ v \in V, \psi_s v = \psi_a v = 0 \}, \psi_s \in V_s', \psi_a \in V_a', \tag{1.2c}$$

$$\psi_s \phi_s = 0, \psi_a \phi_a \neq 0. \tag{1.2d}$$

Definition 1.2 $(u_0, \lambda_0, \alpha_0, \beta_0)$ is called a STB2 point of (1.1) if

$$f(u_0, \lambda_0, \alpha_0, \beta_0) = 0, u_0 \in U_s,$$
 (1.3a)

$$N(f_u^0) = \operatorname{span}(\phi_s, \phi_a), \phi_s \in U_s, \phi_a \in U_a, \tag{1.3b}$$

$$R(f_u^0) = \{ v \in V, \psi_s v = \psi_a v = 0 \}, \psi_s \in V_s', \psi_a \in V_a'.$$
(1.3c)

$$\psi_s \phi_s \neq 0, \psi_a \phi_a = 0. \tag{1.3d}$$

Definition 1.3 $(u_0, \lambda_0, \alpha_0, \beta_0)$ is called a TB-Hopf1 point of (1.1) if

$$f(u_0, \lambda_0, \alpha_0, \beta_0) = 0, u_0 \in U_s, \tag{1.4a}$$

$$N(f_u^0) = \operatorname{span}(\phi_s), \phi_s \in U_s, \tag{1.4b}$$

$$R(f_u^0) = \{ v \in V, \psi_s v = 0 \}, \psi_s \in V_s', \tag{1.4c}$$

$$\psi_s \phi_s = 0, \tag{1.4d}$$

$$N(f_u^0 \pm \omega_0 iI) = \text{span}(a_a + ib_a), \omega_0 > 0, a_a, b_a \in U_a.$$
 (1.4e)

Definition 1.4 $(u_0, \lambda_0, \alpha_0, \beta_0)$ is called a TB-Hopf2 point of (1.1) if

$$f(u_0, \lambda_0, \alpha_0, \beta_0) = 0, u_0 \in U_s, \tag{1.5a}$$

$$N(f_u^0) = \operatorname{span}(\phi_a), \phi_a \in U_a, \tag{1.5b}$$

$$R(f_u^0) = \{ v \in V, \psi_a v = 0 \}, \psi_a \in V_a', \tag{1.5c}$$

$$\psi_a \phi_a = 0, \tag{1.5d}$$

$$N(f_u^0 \pm \omega_0 iI) = \text{span}(a_s + ib_s), \omega_0 > 0, a_s, b_s \in U_s.$$
 (1.5e)

For (1.1) with four parameters, we have

Definition 1.5 $(u_0, \lambda_0, \alpha_0, \beta_0, \gamma_0)$ is called a double TB point of (1.1) if

$$f(u_0, \lambda_0, \alpha_0, \beta_0, \gamma_0) = 0, u_0 \in U_s, \tag{1.6a}$$

$$N(f_u^0) = \operatorname{span}(\phi_s, \phi_a), \phi_s \in U_s, \phi_a \in U_a, \tag{1.6b}$$

$$R(f_u^0) = \{ v \in V, \psi_s v = \psi_a v = 0 \}, \psi_s \in V_s', \psi_a \in V_a', \tag{1.6c}$$