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Abstract

In this paper, we discuss the a posteriori error estimate of the finite element approx-

imation for the boundary control problems governed by the parabolic partial differential

equations. Three different a posteriori error estimators are provided for the parabolic

boundary control problems with the observations of the distributed state, the boundary

state and the final state. It is proven that these estimators are reliable bounds of the finite

element approximation errors, which can be used as the indicators of the mesh refinement

in adaptive finite element methods.

Mathematics subject classification: 49J20, 65N30.

Key words: Boundary control problems, Finite element method, A posteriori error esti-

mate, Parabolic partial differential equations.

1. Introduction

Finite element approximation plays a very important role in the numerical methods for

optimal control problems. There have been extensive theoretical and numerical studies in this

research direction. For instance, the error analysis for optimal control problems governed by

linear elliptic equations has been established in [12,13], the error estimates for some important

flow control problems are given in [14], the error estimates for Dirichlet boundary control

governed by semilinear elliptic equations are provided in [6]. Some recent progress in this area

has been summarized in [24].

In recent years, the adaptive finite element method has been investigated extensively. It has

become one of the most popular methods in the scientific computation and numerical modelling.

Adaptive finite element approximation ensures a higher density of nodes in a certain area of the

given domain, where the solution is more difficult to approximate, indicated by a posteriori error

estimators. Hence it is among the most important means to boost the accuracy and efficiency

of finite element discretizations. We acknowledge the pioneering work due to Babuška and

Rheinboldt [2]. Further references can be found in the monographs [1,3,28], and the references

therein.

Earlier works on a posteriori error estimates are concentrated on the elliptic partial differen-

tial equations. Later, there are many works about the a posteriori error estimates for parabolic

problems. We mention the work of Eriksson and Johnson [10,11], which is based on the analysis

of linear dual problems of the corresponding error equations. The derived a posteriori error

estimates depend on the H2 regularity assumption on the underlying elliptic operator. In [25],
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Picasso derived a posteriori error estimator in the classical L2-norm in time and H1-norm in

space based on the energy method, and a lower bound for the local error is also derived for

the associated a posteriori error indicator. Recently, Chen and Jia [7] obtained an efficient and

reliable a posteriori error estimate for linear parabolic equations, which is also in the energy

norm and based on a direct energy estimate argument.

In the decades, there appear many works concentrating on the adaptivity of various optimal

control problems. For example, [4] studied the adaptive finite element method for the optimal

control problems governed by PDE, while a posteriori error estimators for convex distributed

optimal control problems governed by elliptic equations, parabolic equations, Stokes equations,

integral equations and integro-differential equations are derived in [5,17,19,21–23], respectively,

the a posteriori error estimates for the boundary control problems governed by elliptic equation

are also discussed in [15, 20].

The main objective of this paper is to establish the a posteriori error estimate of the finite

element approximation for the boundary control problems governed by the parabolic partial

differential equations. Three different a posteriori error estimators are provided for the parabolic

boundary control problems with the observations of the distributed state, the boundary state

and the final state. It is proven that these estimators are reliable bounds of the finite element

approximation errors, and can be used as the indicators of the mesh refinement in adaptive

finite element methods. Although we use some ideas and techniques, which have been applied

in our earlier work for the parabolic distributed optimal control and the elliptic boundary

control (see, e.g., [19,20,23]), in the a posteriori error estimate analysis of this paper, there are

some obviously different difficulties which should be solved for the parabolic boundary control

problems.

The paper is organized as follows: In section 2, we introduce the model problems and their

weak formulations, provide their fully discrete finite element approximation schemes. Then

we discuss the a posteriori error estimate of the finite element approximation for the parabolic

boundary control problems in Section 3. We provide three different a posteriori error estimators

for the parabolic boundary control problems with the observations of the distributed state, the

boundary state and the final state in Subsections 3.1, 3.2 and 3.3, respectively.

2. Model Problems and Finite Element Approximations

In this section, we will introduce the boundary control problems governed by the parabolic

partial differential equations with three kinds of different observations and their finite element

approximations.

Let Ω be a bounded domain in Rn(n ≤ 3) with a Lipschitz boundary ∂Ω. In this paper,

we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω with norm ‖ · ‖m,p,Ω and

seminorm | · |m,p,Ω. We denote Wm,2(Ω) by Hm(Ω) and set H1
0 (Ω) ≡ {v ∈ H1(Ω) : v|∂Ω=0}.

We denote by Ls(0, T ; Wm,p(Ω)) the Banach space of all Ls integrable functions from (0, T )

into Wm,p(Ω) with norm

‖v‖
Ls

(

0,T ;W m,p(Ω)
) =

(
∫ T

0

‖v‖s
m,p,Ωdt

)
1
s

for s ∈ [1,∞)

and the standard modification for s = ∞. Similarly, one define the spaces H1
(

0, T ; Wm,p(Ω)
)

and Cl
(

0, T ; Wm,p(Ω)
)

. In addition c or C denotes a general positive constant independent of

the mesh size parameter h.


