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Abstract

In this paper we extend the standard Ultra Weak Variational Formulation (UWVF) of

Maxwell’s equations in an isotropic medium to the case of an anisotropic medium. We verify

that the underlying theoretical framework carries over to anisotropic media (however error

estimates are not yet available) and completely describe the new scheme. We then consider

TM mode scattering, show how this results in a Helmholtz equation in two dimensions

with an anisotropic coefficient and demonstrate how to formulate the UWVF for it. In

one special case, convergence can be proved. We then show some numerical results that

suggest that the UWVF can successfully simulate wave propagation in anisotropic media.
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1. Introduction

Electromagnetic wave propagation in anisotropic media arises in several applications includ-

ing ground penetrating radar [3], microwave interaction with wood [13] and biological materi-

als [20]. This paper is devoted to developing a method for approximating the electromagnetic

field propagating in anisotropic media, with particular attention to microwave interactions with

anisotropic (e.g. wooden) scatterers. This implies that the wavelength of the radiation is neither

very large nor very small compared to features of scatterers located in the medium.

We shall develop a Discontinuous Galerkin (DG) method for the anisotropic Maxwell system

with the novelty that local solutions of the anisotropic Maxwell system on each element are used

as basis functions. This requires us to impose the restriction that the matrix electromagnetic

parameters ǫ (permittivity) and µ (permeability) must be piecewise constant on each element

in the mesh. More precisely, the method we shall develop is an extension of the Ultra Weak

Variational Formulation (UWVF) of Cessenat and Després [4–6] to anisotropic media. The basic

UWVF has proved to be a convenient method for approximating electromagnetic scattering in

isotropic media. For example, in [17] we detail the connection of the UWVF to standard

DG methods, give several extensions to the basic UWVF and provide validation results using

standard electromagnetic scattering benchmark problems.

It is, of course, possible to handle anisotropic media in the classical finite element method

for Maxwell’s equations based on Nédélec’s [26] edge elements. We have found the UWVF to
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be competitive with the edge finite element method, and in [17] we show that the UWVF can

be more memory efficient then edge elements and is also easily parallelized for electromagnetic

applications. This motivates our extension of the UWVF to anisotropic media.

The UWVF is by no means the only technique that can be used to approximated wave

propagation by using local solutions of the Maxwell system as basis functions. The UWVF

resembles the basic Trefftz type finite element technique that has been applied to Maxwell’s

equations in [27, 28] although the variational statement is different. At least for the Helmholtz

equation, other methods include least squares techniques [21, 25, 30] and enriched finite ele-

ment methods [31, 32]. In a different direction, the Partition of Unity Finite Element Method

(PUFEM) constructs a conforming approximation space as a product of partition of unity

functions (usually finite element hat functions) and plane waves [1, 22, 23]. As yet there is

probably not enough experience with the various methods to declare one preferable to another

(for interesting comparison results for the Helmholtz equation in 2D see [12, 14]).

The plan of this paper is as follows. In the remainder of the introduction we shall describe

in more detail the problem we shall study. Then in Section 2 we show that the fundamental

mathematical result behind the UWVF for Maxwell’s equations still holds for anisotropic media.

This implies that the basic UWVF can be extended to anisotropic media, and we give details. In

Section 3 we examine the choice of basis functions. As usual we employ a basis of plane waves on

each element [4]. Plane wave propagation in anisotropic media is a classical topic in textbooks

on electromagnetism (see e.g. [7, 19]). We shall summarize some of the relevant results, derive

some consequences for the UWVF and then show how to use the plane waves to discretize

the anisotropic UWVF. Almost all theoretical questions related to the 3D UWVF approach to

anisotropic media are still open: in particular, the relevant approximation properties of sums

of anisotropic plane waves are not known.

In Section 4 we discuss the case of electromagnetic wave propagation in an orthotropic

medium. This reduces to solving the Helmholtz equation in two dimensions with an anisotropic

“diffusion” coefficient. This problem can also be approximated by an extension of the UWVF in

[4] to orthotropic media (or by a restriction of the above mentioned 3D UWVF to the orthotropic

case). In contrast to the 3D case, the known convergence theory for the 2D Helmholtz UWVF

can be extended to the anisotropic case in one case. We summarize the main steps and results.

In Section 5 we present some preliminary numerical results for an orthotropic medium.

These results show that the UWVF is a promising method for dealing with anisotropic media.

One interesting result is that since we can view the Perfectly Matched Layer (PML) [2,24] as a

special (non-physical) anisotropic medium, it can be implemented in a general anisotropic code

without further modification. Our results show that this method of implementing the PML

works as well as our previous implementation based on special plane waves [16, 17].

The model problem we shall investigate is to approximate the electric and magnetic fields

E and H (appropriately scaled [24]) that satisfy the Maxwell system

−ikǫrE −∇×H = 0

−ikµrH + ∇×E = 0

}

in Ω, (1.1)

where Ω is a bounded polyhedral domain. Here k is the wave-number of the radiation that is

related to the temporal frequency ω > 0, the permittivity of free space ǫ0 and the permeability

of free space µ0 by k = ω
√

ǫ0µ0. The relative permittivity ǫr is assumed to be a complex valued


