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Abstract

The exact boundary condition on a spherical artificial boundary is derived for the
three-dimensional exterior problem of linear elasticity in this paper. After this bound-
ary condition is imposed on the artificial boundary, a reduced problem only defined in a
bounded domain is obtained. A series of approximate problems with increasing accuracy
can be derived if one truncates the series term in the variational formulation, which is
equivalent to the reduced problem. An error estimate is presented to show how the error
depends on the finite element discretization and the accuracy of the approximate problem.
In the end, a numerical example is given to demonstrate the performance of the proposed
method.
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1. Introduction

Numerical approximation to the solutions of PDEs in unbounded domains has attracted
much attention of engineers and mathematicians in the last three decades. Many effective and
efficient methods have been proposed for different problems arising from various research areas.
Among them is the so-called artificial boundary method. The key point of this method is to
limit the computational domain by introducing a proper artificial boundary in the exterior
unbounded domain and imposing a suitable boundary condition on the artificial boundary, to
ensure the well-posedness of the reduced problem.

Engquist and Majda [7], Bayliss and Turkel [4] considered first-order hyperbolic equations
and other wave-like equations; Han and Wu [19], Yu [25] designed various types of artifi-
cial boundary conditions for the exterior Laplace equation; Feng [8], Goldstein [13], Deakin
and Rasmussen [6] obtained the nonreflecting boundary conditions for reduced wave equation;
Halpern and Schatzman [16], Han and Bao [17] discussed the incompressible flow in a channel;
Grote and Keller [14], Alpert, Greengard and Hagstrom [1] considered the exterior problem of
time-dependent hyperbolic equation.

For linear elastic problem, Givoli and Keller [11], Han and Wu [19, 20] designed artificial
boundary condition on a circular artificial boundary for two-dimensional case. In addition, Han
and Bao gave an error analysis in [18] for this problem. For the time-harmonic elastic wave
in two dimensions, Givoli and Keller [12] derived the artificial boundary conditions. Grote
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and Keller [15] obtained the exact nonreflecting boundary conditions for elastic waves in three
dimensions.

In this paper, we concentrate on the exterior problem of elasticity in three dimensions.
We obtain an exact boundary condition on the spherical artificial boundary. This boundary
condition is usually called DtN mapping or DtN artificial boundary condition. This approach
has been used by Han and Wu to solve the exterior Laplace equation and elastic problem in
two dimensions (see formulation 2.10 on page 181 of [19]). In the paper by Givoli and Keller
[11], they presented the DtN artificial boundary condition for the exterior problem of Laplace
equation in three-dimension and linear elastic problem in two dimensions. For more information
on this approach, the reader is referred to the review papers by Givoli [9, 10] and Tsynkov [24].

This paper is organized as follows. In section 2, some results on vectorial spherical harmonics
in [21] are listed. In section 3, an exact artificial boundary condition is designed on the spherical
artificial boundary. The equivalent variational problem to the reduced problem is formulated in
section 4. In section 5, the error analysis is presented. This error estimate is dependent not only
on finite element discretization, but on the accuracy of approximate variational formulation.
A numerical example is presented in section 6 to show the performance of our method. This
paper concludes in section 7.

2. Some Results on Vectorial Spherical Harmonics

It is well-known that the spherical harmonic functions {Y m
l , l ≥ 0,−l ≤ m ≤ l} constitutes

an orthogonal basis of space L2(S), where S denotes the surface of unit sphere (see page 24
in [21]). Let x be the location vector, r = |x| and Hm

l = rlY m
l , then {Hm

l ,−l ≤ m ≤ l}
constitutes a basis of all l-order homogeneous harmonic polynomials. We define

Im
l ≡ ∇Hm

l+1, l ≥ 0, −(l + 1) ≤ m ≤ l + 1,

T m
l ≡ ∇Hm

l × x, l ≥ 1, −l ≤ m ≤ l,

Nm
l ≡ (2l − 1)Hm

l−1x − r2∇Hm
l−1, l ≥ 1, −(l − 1) ≤ m ≤ (l − 1)

and denote by Im
l , Tm

l and Nm
l the traces of these functions on S, i.e.
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rl
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l

rl
, Nm
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l

rl
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These functions are called l-order vectorial spherical harmonics.

Lemma 2.1. Let n =
x

r
be the unit vector in the radial direction, then the following hold

∇

(

∇ ·
Im
l

rl+1

)

=
(l + 1)(2l + 1)

rl+3
Nm

l+2,

∇

(

∇ ·
Tm

l

rl+1

)

= 0,

∇

(

∇ ·
Nm

l

rl+1

)

= 0,

(

∇ ·
Im
l

rl+1

)

n = −
1

rl+2

{

(l + 1)(2l + 1)

2l + 3
Im
l +

(l + 1)(2l + 1)

2l + 3
Nm

l+2

}

,

(

∇ ·
Tm

l

rl+1

)

n = 0,

(

∇ ·
Nm

l

rl+1

)

n = 0,


