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Abstract

Symplectic integration of separable Hamiltonian ordinary and partial differential equa-
tions is discussed. A von Neumann analysis is performed to achieve general linear stability
criteria for symplectic methods applied to a restricted class of Hamiltonian PDEs. In this
treatment, the symplectic step is performed prior to the spatial step, as opposed to the
standard approach of spatially discretising the PDE to form a system of Hamiltonian ODEs
to which a symplectic integrator can be applied. In this way stability criteria are achieved
by considering the spectra of linearised Hamiltonian PDEs rather than spatial step size.
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1. Introduction

Symplectic integration schemes are numerical methods for solving Hamiltonian ordinary dif-
ferential equations (ODEs). They differ from many other types of numerical integration schemes
because they preserve the differential 2-form with each iteration (time step) of Hamiltonian
ODEs. Symplectic schemes are the preferred method of numerical integration of Hamiltonian
ODEs because they approximate the flow of the system. As a result, they inhibit artificial dissi-
pation and other undesirable effects often introduced with the use of non-symplectic numerical
methods (see [1]) and error growth is qualitatively and comparatively small [1, 2, 3].

Symplectic integration of Hamiltonian partial differential equations (PDEs) has traditionally
been a matter of applying symplectic methods to a system of Hamiltonian ODEs resulting from
a spatial discretisation of the PDE. This has been the case for applications to the sine-Gordon
equation, the KdV equation, the “good” Boussinesq equation, Fisher’s equation, the nonlinear
Schrédinger equation and others [4, 5, 6, 7, 8, 9]. The usual procedures are to spatially discretise
the Hamiltonian operator and the Hamiltonian separately, using a finite difference method or
a spectral method, and then form the resultant ODEs, or to directly discretise the PDE in
conservative form. This is followed by applying a symplectic integrator to the resultant system
of ODEs.

In this paper we will investigate the linear stability of symplectic methods applied to Hamil-
tonian PDEs. We restrict consideration to separable Hamiltonian PDEs in canonical form. For
these types of equations the Hamiltonian operator is linear and constant. Hence, the preserva-
tion of Hamiltonian structure is ensured when the Hamiltonian operator and the Hamiltonian
are spatially discretised separately or when the PDE is discretised directly in conservative form
[10].

In this paper, the symplectic integration scheme is applied directly to the PDEs in conser-
vative form. The application of symplectic integrators to Hamiltonian PDEs in function space
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results in systems of equations which fit naturally into a von Neumann stability analysis. The
result is a general method for determining stability criteria for symplectic methods applied
directly to linearised Hamiltonian PDEs, independent of spatial discretisation.

2. Explicit and Implicit Symplectic Integrators

We first consider separable and autonomous Hamiltonian ODEs of the form H(p,q) =
T(p) + V(q), with Hamiltonian vector field Xy = X7 + Xy. Hamilton’s equations are
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In this paper we will consider explicit and implicit symplectic integration schemes as con-
structed by the method of generating functions and composition [11, 12, 13, 14, 15], or by
conditions imposed on Rung-Kutta schemes [2, 16, 17, 18, 19]). A general explicit symplectic
method is
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where i = 1,...,k, (po,q) = (p(to),q(to)) represent the initial conditions at time ¢ = t¢ and
(Pr,aqr) = (0',¢") = (p(to + 7),q(to + 7)) is the approximation of the position and momentum
after one time step of length 7. In terms of an exponential product, an explicit n-th order
symplectic integrator can be expressed as
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Table 1 includes a selection of explicit symplectic methods constructed via a method of generat-
ing functions and composition (after [4]). Details of the calculation of the coefficients ¢; and d;
can be found in [11, 12, 20, 13, 14, 15]. Table 2 contains 4th, 5th and 6th order Runge-Kutta-
Nystrom (RKN) methods constructed in [2, 19]. RKN methods are applicable only when the
kinetic energy, T'(p), in the Hamiltonian is quadratic.
Implicit symplectic methods can be obtained by imposing conditions on already existing
Runge-Kutta (RK) methods. When Hamilton’s equations are of the form (1), an s-stage sym-
plectic RK method can be expressed as
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The necessary and sufficient conditions for an s-stage Runge-Kutta method to be symplectic
[16, 21] are b;b; — bia;; — bjaj; = 0,i,j < 's. If a;; = 0 for ¢ < j these methods are explicit,
otherwise they are implicit.

Gaussian Runge-Kutta (GRK) methods are implicit even-order RK methods that are always
symplectic [17]. Coefficients a;j, b;, are determined using methods specific to Gauss collocation,
described in [17] and [18]. Coefficients for the 2nd order implicit midpoint rule (MP2), and the
4th, 6th, 8th and 10th order Gauss method (GRK4,6,8,10 respectively) appear in [17, 18, 22].

3. Linear Stability

3.1. Hamiltonian Ordinary Differential Equations

As an introduction to linear stability theory of symplectic maps we’ll look at the stability
of symplectic integrators applied to linear ODEs, as provided in [4] and [23], and then tackle
the more complicated case of Hamiltonian PDEs.



