ON MATRIX UNITARILY INVARIANT NORM CONDITION NUMBER*

Dao-sheng Zheng

(Department of Mathematics, East China Normal University, Shanghai 200062, China)

Abstract

In this paper, the unitarily invariant norm $\|\cdot\|$ on $\mathbb{C}^{m \times n}$ is used. We first discuss the problem under what case, a rectangular matrix A has minimum condition number $K(A) = \|A\| \|A^+\|$, where A^+ designates the Moore-Penrose inverse of A; and under what condition, a square matrix A has minimum condition number for its eigenproblem? Then we consider the second problem, i.e., optimum of $K(A) = \|A\| \|A^{-1}\|_2$ in error estimation.

Key words: Matrix, unitarily invariant norm, condition number

1. Introduction

Since 1984, several chinese mathematicians have obtained many results bout matrix operator norm condition number^[11,12,18].

Two kinds matrix condition numbers [9] are :

(1) If $A \in \mathbb{C}^{n \times n}$ is nonsingular, the number $K_{\alpha}(A) = ||A||_{\alpha} ||A^{-1}||_{\alpha}$ is called the α -norm condition number of A for its inverse, where $|| \cdot ||_{\alpha}$ is some matrix norm, such as the 2-norm, Hölder-norm, F-norm, etc..

Furthermore, we can generalize the inverse condition number to rectangular matrix case [1], [8], $K(A) = ||A||_{\alpha} ||A^+||_{\beta}$, and allows $\alpha \neq \beta$.

(2) For a square matrix $A \in \mathbb{C}^{n \times n}$, set

$$V_A = \{ X \mid X \in \mathbb{C}^{n \times n}, \ X^{-1}AX = J_A, \text{a Jordan form of } A \}.$$
(1.1)

Then the number

$$J_{\alpha} = \inf_{X \in V_A} \{ \|X\|_{\alpha} \|X^{-1}\|_{\alpha} \}$$
(1.2)

is called the α -norm condition number of A for its eigenproblem.

Wilkinson^[9] pointed out that a) If matrix A is normal, then $J_2(A) = 1$. b) If A is unitary, then $K_2(A) = 1$.

Zheng^[11,12] obtained the necessary and sufficient conditions for minimizing two kinds of *p*-norm condition numbers $(1 \le p \le \infty)$.

Zheng and Zhao^[8] obtained the structures of *p*-norm isometric matrix $A \in \mathbb{C}^{m \times n}$ and the bounds of $K_p(A) = ||A||_p ||A^+||_p$ $(1 \le p \le \infty)$; Wang and Chen obtained the structures of a rectangular matrix A with minimum *p*-norm condition number $(1 \le p \le \infty, p \ne 2)$.

^{*} Received March 11, 1994.

All the above results are concerned with matrix operator norms.

Other results associated with matrix operator norm condition number are given by Yang^[10], i.e., the optimum of $K(A) = ||A|| ||A^{-1}||$ in the error estimation of linear equation Ax = b and the process of computing A^{-1} .

In this paper, another important kind matrix norm, the unitarily invariant norm on $\mathbb{C}^{m \times n}$ (UIN) is discussed, and some results associated condition number are obtained.

The rest of the paper is arranged as follows. Section 2 is preliminary. In Section 3, the structures of the rectangular matrices with minimum UIN condition number $K(A) = ||A|| ||A^+||$ are discussed. In Section 4, the condition for a square matrix A possesses minimum UIN condition number for its eigenproblem is obtained. Finally, Section 5 is used to describe some results about the optimum of $K(A) = ||A|| ||A^{-1}||_2$ in error estimation, where $\|\cdot\|$ designates a UIN.

2. Preliminaries

Definition 2.1^[6,7]. A norm $\|\cdot\|$: $\mathbb{C}^{n \times n} \to \mathbb{R}$ is called unitarily invariant (UIN) if *it satisfies* :

(1) $||UAV|| = ||A||, \forall A, U, V \in \mathbb{C}^{n \times n}, and U^H U = V^H V = I_n.$

(2) $||A|| = ||A||_2$ if rank(A) = 1. **Definition 2.2**^[6,7]. A norm $\Phi : \mathbb{R}^n \to \mathbb{R}$ is called a symmetric gauge function (SG) *if it satisfies* :

- (1) For any permutation matrix P, $\Phi(Px) = \Phi(x)$, $\forall x \in \mathbb{R}^n$.
- (2) $\Phi(|x|) = \Phi(x)$, where $x = (\xi_1, \dots, \xi_n)^T$, and $|x| = (|\xi_1|, \dots, |\xi_n|)^T$.
- (3) $\Phi(e_1) = 1$, where e_1 is the first column of I_n .

The conception of unitarily invariant norm can be generalized to the rectangular matrix case [6], [7, p. 79], and many properties of the UIN can be found in [6] [7] etc..

Lemma 2.1. Let $\Phi_p : \mathbb{R}^m \to \mathbb{R}$ be a function defined by

$$\Phi_p(x) = \|x\|_p = \left(\sum_{i=1}^m |\xi_i|^p\right)^{1/p}, \ (1 \le p \le \infty).$$
(2.1)

Then Φ_p is a SG on \mathbb{R}^m .

Proof. It is obvious that Φ is the *Hölder* norm on \mathbb{R}^m [5], and satisfies (1) (2) (3) of Definition 2.2. \Box

If $A \in \mathbb{C}^{k \times l}$, Φ is a SG on \mathbb{R}^n , $m = \min\{k.l\} \le n, \sigma_1, \cdots, \sigma_m$ are the singular values of A. Then a UIN on $\mathbb{C}^{k \times l}$ may be defined by [6, p. 79]

$$||A||_{\Phi} = \Phi(\sigma_1, \cdots, \sigma_m, 0 \cdots, 0).$$
(2.2)

It is easy to see that ^[6] $||A||_{\Phi_0} = ||A||_2$, and $||A||_{\Phi_2} = ||A||_F$.

Definition 2.3. If Φ_p is defined by (2.1), $\|\cdot\|_{\Phi}$ is defined by (2.2). Then $\|\cdot\|_{\Phi_p}$ is called a pUIN on $\mathbb{C}^{k \times l}$.

Lemma 2.2. Suppose $0 \neq A \in \mathbb{C}^{m \times n}$, $\|\cdot\|$ is a UIN family. Then

$$K(A) = ||A|| ||A^+||_2 \ge 1$$
, and $K(cA) = K(A)$ when $c \ne 0$. (2.3)