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Abstract

In this paper, we discuss the quadrilateral finite element approximation to the
two-dimensional linear elasticity problem associated with a homogeneous isotropic
elastic material. The optimal convergence of the finite element method is proved for
both the L2-norm and energy-norm, and in particular, the convergence is uniform
with respect to the Lamé constant λ. Also the performance of the scheme does not
deteriorate as the material becomes nearly incompressible. Numerical experiments
are given which are consistent with our theory.
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1. Planar linear elasticity problem

The two-dimensional linear elasticity problem associated with a homogeneous
isotropic elastic material with pure displacements can be modelled by the following
elliptic boundary value problem:

−µ∆~u− (µ + λ)∇(div ~u) = ~f, in Ω, (1.1)

~u = ~0, on ∂Ω, (1.2)

where Ω ⊂ <2 is an open and bounded domain, ~u = (u1, u2) the displacement, ~f(x) the
body force, and λ, µ the Lamé constants. Different equivalent formulations of (1.1)–
(1.2) can be found in [3, 4, 11].

It is well known that the convergence rate for the standard displacement method
using continuous linear finite elements deteriorates as the Lamé constant λ becomes
large, i.e., the elastic material is nearly incompressible. Many finite element methods
of higher order have been proposed which work uniformly well for all λ, see [2, 3, 1, 14].
However, all these elements are required to satisfy the Babuska-Brezzi-Ladyzenskaja
condition for saddle point problems.
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In this paper, we use the simplest finite elements, i.e. the bilinear elements, which
do not satisfy the Babuska-Brezzi-Ladyzenskaja condition, for the above elasticity prob-
lem. The key technique here is to use the reduced integration to deal with the second
term in the equation (1.1). We apply the finite element method studied in [5] and [8]
and use a variant of the stability condition for some subspaces of the global finite ele-
ment space. We are able to prove the optimal error estimates in both the energy-norm
and L2-norm uniformly with respect to the Lamé constant λ, thus the convergence rate
does not deteriorate even for nearly incompressible material.

Before ending this section, we introduce some notation used in the paper. For any
positive integer m, Hm(Ω) denotes the usual Sobolev space of all square integrable
functions over Ω with square integrable derivatives of order up to m, and its norm and
semi-norm are denoted by ‖ · ‖m and | · |m. H1

0 (Ω) is the subspace of H1(Ω) with its
functions vanishing on the boundary ∂Ω (in the sense of trace). L2

0(Ω) is the space of
all square integrable functions over Ω with their mean values in Ω vanishing.

2. The Bilinear Element Method

We first consider a very simple and regular domain in this section, i.e. the domain
Ω is a rectangle. But we shall show in Section 4 that the method addressed in this
section can be naturally extended to more general domains which may be triangulated
using quadrilateral elements. As usual, we assume the Lamé constants µ, λ are in the
following ranges 0 < µ0 ≤ µ ≤ µ1, 0 < λ < ∞.

By Green’s formula, it is easy to derive the weak formulation of the system (1.1)–
(1.2):

Problem (P). Find ~u ∈ [H1
0 (Ω)]2 such that

µ(∇~u,∇~v) + (µ + λ)(div ~u, div ~v) = (~f,~v), ∀~v ∈ [H1
0 (Ω)]2, (2.1)

where (·, ·) denotes the inner product in L2(Ω) or [L2(Ω)]2.
Let T h be a triangulation of the domain Ω into rectangular elements of mesh size

h, which is obtained by refining a coarse rectangular mesh by dividing each coarse
element into four subelements by linking the mid-points of the opposite edges of the
coarse element. We then define the bilinear finite element space Vh by

Vh = {~vh ∈ [H1
0 (Ω)]2 : ~vh|K ∈ [Q1(K)]2, ∀K ∈ T h }, (2.2)

where Ql(K) (l positive integer) is the space of polynomials of degree less than or equal
to l in each variable on K.

Then the finite element problem to Problem (P) is formulated as follows:
Problem (Ph). Find ~uh ∈ Vh such that

µ(∇~uh,∇~vh) + (µ + λ)I1(div ~uh,div ~vh) = (~f,~vh), ∀~vh ∈ Vh, (2.3)

where I1(·, ·) denotes the one-point Gaussian quadrature in each element, i.e.,

I1(div~uh,div~vh) =
∑

K∈T h

|K|div ~uh(qK) div ~vh(qK)


