HIGH ACCURACY FOR MIXES FINITE ELEMENT METHODS IN RAVIART-THOMAS ELEMENT*

Q. Lin
(Institute of Systems Science, Chinese Academy of Sciences, Beijing, China)
J.H. Pan
(Department of Basic Sciences, University of Petroleum, Beijing, China)

Abstract

This paper deals with Raviart-Thomas element $\left(Q_{2,1} \times Q_{1,2}-Q_{1}\right.$ element). Apart from its global superconvergence property of fourth order, we prove that a postprocessed extrapolation can globally increased the accuracy by fifth order.

1. Introduction

We consider the mixed methods of the Neumann boundary value problem

$$
\begin{align*}
\mathbf{p}+\nabla u & =0 \quad \text { in } \Omega \\
\operatorname{div} \mathbf{p} & =f \quad \text { in } \Omega, \tag{1}\\
\mathbf{p} \cdot \mathbf{n} & =0 \quad \text { on } \partial \Omega,
\end{align*}
$$

where $\Omega \subset R^{2}$ is a bounded domain with boundaries parallel to axes, \mathbf{n} is the outer unit normal to $\partial \Omega$. Denote

$$
\mathbf{H}_{0}(\text { div })=\{\mathbf{q} \in \mathbf{H}(\text { div }), \mathbf{q} \cdot \mathbf{n}=0 \text { on } \partial \Omega\}
$$

then we can write the weak formulation of (1) as follows: Find $(u, \mathbf{p}) \in L^{2}(\Omega) \times \mathbf{H}_{0}$ (div) such that

$$
\begin{equation*}
(\mathbf{p}, \mathbf{q})-(u, \operatorname{div} \mathbf{q})+(v, \operatorname{div} \mathbf{p})=(f, v), \quad \forall(v, \mathbf{q}) \in L^{2}(\Omega) \times \mathbf{H}_{0}(\operatorname{div}) \tag{2}
\end{equation*}
$$

Let $V_{h} \times \mathbf{P}_{h} \subset L^{2}(\Omega) \times \mathbf{H}_{0}($ div $)$ be a pair of finite element spaces with respect to T_{h}, a uniform rectangular mesh with the size $2 h$. Then the mixed finite element approximation for (2) seeks $\left(u_{h}, \mathbf{p}_{h}\right) \in V_{h} \times \mathbf{P}_{h}$ such that

$$
\begin{equation*}
\left(\mathbf{p}_{h}, \mathbf{q}\right)-\left(u_{h}, \operatorname{div} \mathbf{q}\right)+\left(v, \operatorname{div} \mathbf{p}_{h}\right)=(f, v), \quad \forall(v, \mathbf{q}) \in V_{h} \times \mathbf{P}_{h} \tag{3}
\end{equation*}
$$

[^0]Here we choose $V_{h} \times P_{h}$ as one of RT elements, i.e. $Q_{2,1} \times Q_{1,2}-Q_{1}$ element ${ }^{[3]}$, which satisfies the BB-condition and is described as

$$
\left\{\begin{array}{l}
\mathbf{P}_{h}=\left\{\mathbf{q} \in \mathbf{H}_{0}(\text { div }),\left.\mathbf{q}\right|_{e} \in Q_{2,1}(e) \times Q_{1,2}(e), \quad \forall e \in T_{h}\right\}, \tag{4}\\
V_{h}=\left\{v \in L^{2}(\Omega),\left.v\right|_{e} \in Q_{1}(e), \quad \forall e \in T_{h}\right\},
\end{array}\right.
$$

where

$$
Q_{m, n}=\operatorname{span}\left\{x^{i} y^{j}, \quad 0 \leq i \leq m, 0 \leq j \leq n\right\} ; \quad Q_{m, m}=Q_{m} .
$$

Some superconvergence results for RT element have been derived by Nakata, Weiser, Wheeler, Douglas, Milner, Wang, Ewing and Lazarov([?]-[?], [?]). The asymptotic expansion was also obtained for the lowest order RT element or $Q_{1,0} \times Q_{0,1}-Q_{0}$ element by $\operatorname{Wang}([?])$. The aim of this paper is to obtain the global superconvergence of $O\left(h^{4}\right)$ and the postprocessed extrapolation result of $O\left(h^{5}\right)$ for $Q_{2,1} \times Q_{1,2}-Q_{1}$ element by using integral identity, which was created by Lin et al([?],[?]).

2. Global Superconvergence

For $e \in T_{h}$, we assume that $\left(x_{e}, y_{e}\right)$ is the center of gravity, s_{1} and s_{3} of the width $2 k$ are the edges along y-direction, s_{2} and s_{4} of the width $2 h$ are the edges along x-direction. Then we can define interpolation operators j_{h} and i_{h} by

$$
\left\{\begin{array}{l}
\left.j_{h} \mathbf{p}\right|_{e} \in Q_{2,1}(e) \times Q_{1,2}(e), \\
\int_{s_{i}}\left(\mathbf{p}-j_{h} \mathbf{p}\right) \mathbf{n} d s=0 \quad \forall \varphi \in P_{1}\left(s_{i}\right) \quad i=1,2,3,4, \tag{6}\\
\int_{e}\left(\mathbf{p}-j_{h} \mathbf{p}\right) \mathbf{q}=0 \quad \forall \mathbf{q} \in P_{1}(y) \times P_{1}(x), \\
\int_{e}\left(u-i_{h} u\right) v=0 \quad \forall v \in Q_{1}(e)
\end{array}\right.
$$

We immediately find from integration by parts that

$$
\left(v, \operatorname{div}\left(\mathbf{p}-j_{h} \mathbf{p}\right)\right)=0 \quad \forall v \in V_{h}
$$

In fact, the projection j_{h} satisfying term above is Fortin's operator (see [?]) and in this paper it is locally defined. This definition can be also seen in [?] and [?]. i_{h} is the local L^{2}-projection operator. Since $\operatorname{divq} \in V_{h}$, we can see that

$$
\left(u-i_{h} u, \operatorname{div} \mathbf{q}\right)=0, \quad \forall \mathbf{q} \in \mathbf{P}_{h}
$$

Lemma 1. If $\mathbf{p} \in\left[W^{5, r}(\Omega)\right]^{2}$, then we have

$$
\begin{aligned}
& \left(\mathbf{p}_{h}-j_{h} \mathbf{p}, \mathbf{q}\right)-\left(u_{h}-i_{h} u, \operatorname{div} \mathbf{q}\right)+\left(\operatorname{div}\left(\mathbf{p}_{h}-j_{h} \mathbf{p}\right), v\right) \\
= & \frac{2}{45} h^{4} \int_{\Omega}\left(p_{1}\right)_{x x x x} q_{1}+\frac{2}{45} k^{4} \int_{\Omega}\left(p_{2}\right)_{y y y y} q_{2}+h^{5} r_{h}(\mathbf{p}, \mathbf{q}) \quad \forall(\mathbf{q}, v) \in \mathbf{P}_{h} \times V_{h}
\end{aligned}
$$

with

$$
\left|r_{h}(\mathbf{p}, \mathbf{q})\right| \leq c\|\mathbf{p}\|_{5, r}\|\mathbf{q}\|_{\mathrm{div}, r^{\prime}}, \quad \frac{1}{r}+\frac{1}{r^{\prime}}=1,1 \leq r, r^{\prime} \leq \infty
$$

[^0]: * Received November 9, 1994.

