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SUPERCONVERGENCE OF FEM FOR SINGULAR
SOLUTION"

Lin Qun
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Superconvergence of the finite element method (FEM]) has been discussed extensively for

the problem having smecoth solution (See Krizek and Neittaanmaki [8]). A typical result in
- this direction is the following (see Lin and Xie [4] for details). Consider the model problem

—Au= fim{l, u=0onadf]
where 1 ¢ R? is a bounded domain with a smooth boundary 38 and f is a smooth function.
In order to keep the mesh varying regularly we impose on {1 a kind of “piecewise almost

uniform triangulation” which can be constructed piecewisely by the vertices of a smoothly
transformed undorm mesh. For any node z in the interior of each piece there exist two

triangles e and ¢’ such that e ne’ = {z}. Then, the average gradient
- 1
Vu(z) = E(Vuh|g + Vutl,)
has not only the usual type of superconvergence
(Vul — Vu(z) = O(h?)

but also an extrapolation type of superconvergence
| 1
EVHHMZ — u")(2) — Vu(z) = O(h?log E)

We are concerned in this paper with the superconvergence for the singular solution due

to re-entrant corners or changing the boundary conditions.

For simplicity we suppose that {1 1s composed of rectangles and the boundary {1} is
parallel to the z-and y-axis and has only one re-entrant corner at the origin 0. Let a be the
interior angle at 0 and 2 = n/a.

It 1s easy to see that

uEHf’,+” for r > 1= 8,

3
(r+1)

lwlls,(r41) = [Z L(|X|’“2+|3"||35"u|)2d‘7{]

|71<3

1s defined using the weighted norm
1/2

where the Sobolev space H

with X = (z, y).
We now introduce a rectangular mesh 7” = {¢}, where (z., y.) denotes the center of the
element ¢ and 2Ah, and 2k, are its widths in the z- and y-direction, respectively. Further,

we set

d. = max(h,, k.), h=max{d., e e T?},
do = max{d.,e € T",0 € e}, r.=min{|X|, X € e}.
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Let T" be split into two parts,
, ﬂg = {E - Th,f’ﬁ < du}, ﬂ1 = {E - Th, dﬂ < 1",5},

where the local meshes are assumed to satisfy the grading conditions
i
dgﬂﬂhq, q}‘és tiz;

1
cihr? < d, £ chrf, Vd, < re, p=1—-q-r-,

where ¢ is the grading parameter and ¢ is the superconvergence parameter. For example, if
0 = (—1,1) x (~1,1)\[0, 1] x {0} (a slit domain}, such meshes can be constructed by taking
nodes

(£(z/n)?, (7 /n)")(1 €5, <0}, ¢> 2

Since a larger t will lead to a larger g, the user has to make up his choice between a higher
accuracy and a less graded mesh. We note that the total number of nodes of the graded
meshes is the same as for a uniform mesh of size k, and that the size of the largest element
is of the order h.
Let
0, ={X e, {X|=p:>0}

,
> be the interior node of {33 and N the number of all interior nodes of {1,:
N = 0(h™?).

For such z there exist two elements ¢ and ¢’ such that e N e’ = {z} and we can define, for
v € §* the piecewise bilinear finite element space, the average gradient

_ g, i
d.v(z) = 3 ramuhn{z) | . AL vle(2),
) s ko
Ayv(z) = W ’Byv|er[z) ke Jayulﬂ(z).

Let u! € S® be the interpolation of u and u¥ € Sh" the Ritz projection of u. It is easy
to see from Taylor expansion the superconvergence of ul after averaging: |

Lemma 1.

(8 — Bu)(2)] < ch®{|ulls.co.01

where the notation 8 means 3, or J,.
Qur purpose is to prove the superconvergence of ufl after averaging:

Theorem. The grading parameter q increases the gradient accuracy from B-order to
nearly gB-order: :

1. B 1/2
5 37 ((8u - au)(=)F| T <k, t<gp
zEﬁg

The proof of our theorem is based on the lemmas as follows (c.f. [1]-{2]).

Lemma 2. For the function F(z) satisfying F{z. £ he) = 0, we have

Te+he 1 Xethe
/ FPdz = —] PF'dz,
Te—HNe 2 2.—he

where P(z) = (z — 2 + he)(z — 2. — he).



