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USING A PREDICTOR-CORRECTOR SCHEME
TO COMPUTE NAVIER-STOKES EQUATIONS
IN THREE-DIMENSIONAL SPHERICAL
COORDINATES

- CEHANG QIAN-—SHUN (% #0)
(Institute of Applied.Mathomatics, Academia Sinica, Beijing, China)

Abstract

A new predictor—corrector difference scheme is described for solving the time-dependent
Navier -Séokes equations in three-dimensional spherical coordinates. A boundary condition for the
pressure is deduced by auziliary velocity. A multigrid algorithm iz employed in solvirg equations of
the pressure. An example of application of this scheme is computed and its results are presented.

§ 1. Introduction

In a general numerical scheme for Navier-Stokes equations, velooities are
advanced explicitly in time. In such explicit schemes, the time step is restricted by
stability conditions, Thig is more stringent for a smaller Reynolds number and,
especially, in spherical coordinates. A predictor—corrector scheme is given in this
paper. It saves computational time and keeps properties of the differential
equations (#-Ve, #)=0. The pressure is computed by a -Poisson’s equaiion. A
boundary condition for the equation is given by means of auxiliary velocities. In
order to reduce computational time, a mulfigrid algorithm is employed in solving
Poisson’s equation,

In this paper ky, ks and ks are step sizes in 7, ¢ and @ direction, respectively.
The following notations for difference operators are used:
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§ 2. Differential Equations and Basic Algorithm

'We consider the Navier-Stokes problem in spherical coordinates
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where £ = (u, v, w) is the velocity vector, p is the ratio of the pressure 40 constani
density (for brevity, we refer to p simply as pressure) and v is a kinematio
viscosity coefficient.

In order to deduce the basic splitting scheme and the boundary condition of
the pressure, we write the Navier-Stokes problem in vector form:
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u|r=ﬂ, (2.9)
2|, o=uUo(r:0-p). (2.10)

First, equations (2.7)—(2.10) are written in difference form only for time:
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