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GENERALIZED BERNSTEIN-BEZIER POLYNOMIALS®

CuaxNe GEng-zEE (¥ A1)
(China University of Science and Technology, Hefei, Ching)

In Qomputer Aided Geometric Design, the following functions

fao(2) =1,
fn (@)= é:?gil j;:l[ (1”_3;)“—1 ]’ =1, 2, <=, m (1)

are known as the mth Bézier basis functions ™»™. The analyfical properties of these
functions have been studied by many authors. Ii is proved in [3] that

I (@) =J g, 4(2) +Jn.i+1(ﬂ’)+'”+~rn,n(m): (2)
where J,., stands for (ﬂ)m‘ (1—a)** $=0, 1, ---, n, the nth Bernstein bagis func-
7
tion. Simple calculations show that
fn,l(m) "'fﬂ,H:l.(m) o Jn.i(m): (3)
f:h'r(m) =ﬂJl—1-i—1(m): d":lj 2: eeey, I, (4)
It is clear from (8) and (4) that
Fn1(B) > Fua(@) > >fan(@), ZE(0, 1), (3)

and that fai(2), =1, 2, +-+, m, Increases gtrictly from 0 to 1 on [0, 1].
For each funotion () defined on [0, 1] and each real number a>>0, we define

Buapi) =00 +3) p(2)- o (L55) 72 @, (6)
or equivalently .
Buolgi @)= 339 (L) [f250(@) —fhun @], (7)

where faniz=0. In the case a=1, we see from (7) and (3) that B,,1(@; ) is just the
nth Bernstein polynomial of p(2). (6) and (7) are called the generalized Bernstein—
Bézier polynomial of ¢(#), although they may fail to be polynomials when « is noi a
positive integer. * | | *

In this paper, the uniform convergence

Hm B,,.(p; %) = p(x)

TL— =D

ig established for (%) continuous on [0, 1} and for each a>0. And a theorem similar
to that of Kelisky and Rivlin for the iterates of Bernsiein operators 1s proved.

A proof of the uniform convergence of B, .(p) is also given, which is olementary
'but rather tedious. Professor Chen Xiru points oub that fa:(®) represents the
probability that an event A occurs i or more than 4 times in n independent frials,
where # ig the probability that A occurs in a given trial, as shown by (2). He also
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indicates that by the Tchebichev inequality ([6], p. 11) we have for arbitrarily given

>0

1, for i<n(z—s) '

O ’ s
f—reo Fail(®) 0, forizn(e+a) ®)

uniformly for #€ [0, 1], and that the first lemma of this paper follows immediately

irom the fact that 0< £, (o) <1.
The following two identities are nseful in the sequel;

“;j;':‘ gfn.‘i (m) =&, (9)
2 DNifui@) =L +(1-1) 2 (10)

Sinoe by (4) we have

gﬂn,; (@) =n‘_21 Ju-1,4-1{(x)=n
and f,,((0) =0, (9) is proved. Similarly we have

g ¢ [ (@) =n g 8 q-1,4-1(2) =ﬂg B[ famt,-1(®) — fa-1,1(®)]

n—1

=7 2 fa-z,4(2) =n[1+ (n—1)a],

Hence (10) follows. We are going 10 prove the following
Lemma 1. For each real number a:‘;*{} we have

B — Zfit (v) =2 (11)

o ﬂin

uneformly in [0, 1],
Proof. Assume az>1. For arbitrarily given real numbers >0 and 3>0, there
exisbs a positive integer N =N (8, 8) by (8) such that

0<1— 231 (2) <9, if i<n(w—a),
0= £y, i (2) <8, if i=n(z+¢g),
~for @€ [0, 1] and n>N. Hence we have

0<o—2 33 f2u(@) = 1 31, i@) [1-f52()]

-2 3+ 3 4

27 [i-ﬁn{r—s) s>=nizt+e) nlo—)<i<n(ets) ]-

With the last three terms denoted by 3, 2, s respectively, the following estimates
are easily obilained

<Ti<d = f,.i(m)«zﬁ-if...&m)@,

tania—s)
0<m<E 3 [(-frr@l<d31-s,
N ixnia+e) =1

O<T<= > 1< 28,

N nle—s)<é<n(z+s)

Hence the lemma is proved for a=1. It remains to consider the cage 0<a<1. Since
we have



