(1)

## GENERALIZED BERNSTEIN-BÉZIER POLYNOMIALS\*

CHANG GENG-ZHE (常庚哲)

(China University of Science and Technology, Hefei, China)

In Computer Aided Geometric Design, the following functions

$$f_{n,i}(x) = 1,$$

$$f_{n,i}(x) = \frac{(-x)^{i}}{(i-1)!} \frac{d^{i-1}}{dx^{i-1}} \left[ \frac{(1-x)^{n}-1}{x} \right], \quad i=1, 2, \dots, n$$

are known as the nth Bézier basis functions [13]. The analytical properties of these functions have been studied by many authors. It is proved in [3] that

$$f_{n,i}(x) = J_{n,i}(x) + J_{n,i+1}(x) + \dots + J_{n,n}(x),$$
 (2)

where  $J_{n,i}$  stands for  $\binom{n}{i}x^{i}(1-x)^{n-i}$ ,  $i=0, 1, \dots, n$ , the nth Bernstein basis func-

tion. Simple calculations show that

$$f_{n,i}(x) - f_{n,i+1}(x) = J_{n,i}(x),$$
 (3)

$$f'_{n,i}(x) = nJ_{n-1,i-1}(x), \quad i=1, 2, \dots, n.$$
 (4)

It is clear from (3) and (4) that

$$f_{n,1}(x) > f_{n,2}(x) > \cdots > f_{n,n}(x), \quad x \in (0, 1),$$
 (5)

and that  $f_{n,i}(x)$ ,  $i=1, 2, \dots, n$ , increases strictly from 0 to 1 on [0, 1].

For each function  $\varphi(x)$  defined on [0, 1] and each real number  $\alpha>0$ , we define

$$B_{n,\alpha}(\varphi;x) = \varphi(0) + \sum_{i=1}^{n} \left[ \varphi\left(\frac{i}{n}\right) - \varphi\left(\frac{i-1}{n}\right) \right] f_{n,i}^{\alpha}(x), \tag{6}$$

or equivalently

$$B_{n,\alpha}(\varphi;x) = \sum_{i=0}^{n} \varphi\left(\frac{i}{n}\right) [f_{n,i}^{\alpha}(x) - f_{n,i+1}^{\alpha}(x)], \qquad (7)$$

where  $f_{n,n+1}=0$ . In the case  $\alpha=1$ , we see from (7) and (3) that  $B_{n,1}(\varphi; x)$  is just the nth Bernstein polynomial of  $\varphi(x)$ . (6) and (7) are called the generalized Bernstein-Bézier polynomial of  $\varphi(x)$ , although they may fail to be polynomials when  $\alpha$  is not a positive integer.

In this paper, the uniform convergence

$$\lim_{n\to\infty}B_{n,\alpha}(\varphi;x)=\varphi(x)$$

is established for  $\varphi(x)$  continuous on [0, 1] and for each  $\alpha>0$ . And a theorem similar to that of Kelisky and Rivlin for the iterates of Bernstein operators is proved.

A proof of the uniform convergence of  $B_{n,a}(\varphi)$  is also given, which is elementary but rather tedious. Professor Chen Xiru points out that  $f_{n,i}(x)$  represents the probability that an event A occurs i or more than i times in n independent trials, where x is the probability that A occurs in a given trial, as shown by (2). He also

<sup>\*</sup> Received November 20, 1982.

indicates that by the Tchebichev inequality ([6], p. 11) we have for arbitrarily given s>0

$$\lim_{n\to\infty} f_{n,i}(x) = \begin{cases} 1, & \text{for } i \leq n(x-s), \\ 0, & \text{for } i \geq n(x+s) \end{cases}$$
 (8)

uniformly for  $x \in [0, 1]$ , and that the first lemma of this paper follows immediately from the fact that  $0 \le f_{n,i}(x) \le 1$ .

The following two identities are useful in the sequel:

$$\frac{1}{n} \sum_{i=1}^{n} f_{n,i}(x) = x, \tag{9}$$

$$\frac{1}{n^2} \sum_{i=1}^n i f_{n,i}(x) = \frac{x}{n} + \left(1 - \frac{1}{n}\right) \frac{x^2}{2}. \tag{10}$$

Since by (4) we have

$$\sum_{i=1}^{n} f'_{n,i}(x) = n \sum_{i=1}^{n} J_{n-1,i-1}(x) = n$$

and  $f_{*,i}(0) = 0$ , (9) is proved. Similarly we have

$$\sum_{i=1}^{n} i f'_{n,i}(x) = n \sum_{i=1}^{n} i J_{n-1,i-1}(x) = n \sum_{i=1}^{n} i [f_{n-1,i-1}(x) - f_{n-1,i}(x)]$$

$$= n \sum_{i=0}^{n-1} f_{n-1,i}(x) = n [1 + (n-1)x].$$

Hence (10) follows. We are going to prove the following

Lemma 1. For each real number a>0, we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n f_{n,i}^{\alpha}(x)=x\tag{11}$$

uniformly in [0, 1].

*Proof.* Assume  $\alpha \ge 1$ . For arbitrarily given real numbers s > 0 and  $\delta > 0$ , there exists a positive integer  $N = N(s, \delta)$  by (8) such that

$$0 \le 1 - f_{n,i}^{a-1}(x) < \delta$$
, if  $i \le n(x-\varepsilon)$ ,  $0 \le f_{n,i}(x) < \delta$ , if  $i \ge n(x+\varepsilon)$ ,

for  $x \in [0, 1]$  and n > N. Hence we have

$$0 \le x - \frac{1}{n} \sum_{i=1}^{n} f_{n,i}^{\alpha}(x) = \frac{1}{n} \sum_{i=1}^{n} f_{n,i}(x) \left[ 1 - f_{n,i}^{\alpha-1}(x) \right]$$

$$= \frac{1}{n} \left[ \sum_{i < n(x-s)} + \sum_{i > n(x+s)} + \sum_{n(x-s) < i < n(x+s)} \right].$$

With the last three terms denoted by  $\Sigma_1$ ,  $\Sigma_2$ ,  $\Sigma_3$  respectively, the following estimates are easily obtained

$$0 \leqslant \sum_{1} \leqslant \frac{\delta}{n} \sum_{i \leqslant n(x-s)} f_{n,i}(x) \leqslant \frac{\delta}{n} \sum_{i=1}^{n} f_{n,i}(x) \leqslant \delta,$$

$$0 \leqslant \sum_{2} \leqslant \frac{\delta}{n} \sum_{i \geqslant n(x+s)} \left[1 - f_{n,i}^{\alpha-1}(x)\right] \leqslant \frac{\delta}{n} \sum_{i=1}^{n} 1 = \delta,$$

$$0 \leqslant \sum_{3} \leqslant \frac{1}{n} \sum_{n(x-s) \leqslant i \leqslant n(x+s)} 1 \leqslant 2s.$$

Hence the lemma is proved for  $\alpha \ge 1$ . It remains to consider the case  $0 < \alpha < 1$ . Since we have