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Abstract. In this paper we prove that two calculus lemmas, which are used in the
method of moving sphere for classifying certain constant curvature equation, also hold
on Heisenberg group Hn.
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1 Introduction

The Heisenberg group Hn consists of the set

C
n×R=

{

(z,t) : z=(z1,··· ,zn)∈C
n, t∈R

}

with the multiplication law

(z,t)◦(z′ ,t′)=(z+z′,t+t′+2Im(z·z′)),

where z·z′=∑
n
j=1zjz

′
j. As usual, we write zj = xj+

√
−1yj. The Lie algebra is spanned by

the left invariant vector fields

T=
∂

∂t
, Xj =

∂

∂xj
+2yj

∂

∂t
, Yj=

∂

∂yj
−2xj

∂

∂t
, j=1,··· ,n.
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The sub-Laplacian is defined by

△H =
n

∑
j=1

(X2
j +Y2

j ).

In this paper, we shall study the following semilinear subelliptic equation

−∆Hu=up, u≥0, in H
n, (1.1)

where and throughout the paper we always assume that p>1.
This equation is closely related to the study of the CR Yamabe problem. The CR

Yamabe problem on a strictly pseudonconvex CR manifold is analogous to the original
Yamabe problem on compact manifolds. As the first step, Jerison and Lee [8] proved a
sharp Sobolev inequality on the CR sphere S2n+1. Moreover they classified all extremal
functions of the sharp Sobolev inequality. Since S2n+1 is CR equivalent to the Heisenberg
group via the Cayley transform, their classification can be stated as following.

Theorem 1.1. Let u∈C2(Hn) be a solution to equation (1.1) with p= Q+2
Q−2 (where Q=2n+2 is

the homogeneous dimension), and suppose u∈L1+p. Then

u(z,t)= |t+
√
−1|z|2+µ·z+λ|−n , (1.2)

where µ∈Cn, λ∈C, and Imλ> |µ|2/4.

The proof hinges on a complicated and remarkable identity they discovered with the
help of a computer program. It is motivated by Obata’s classic work [16] in the Rieman-
nian case. When restricted on Rn, Obata’s theomem has the following version.

Theorem 1.2. Let u∈C2(Rn) be a positive solution for the following equation

−∆u=u
n+2
n−2 , (1.3)

and suppose u(x)=O(|x|2−n) for large |x|. Then

u(x)=

(

λ

|x−x0|2+λ2

)(n−2)/2

,

for some λ>0 and x0∈Rn.

We recall that there is another completely different approach to such classification
problems. This is the method of moving plane initiated by Gidas, Ni and Nirenberg
[6]. In particular they reproved the above theorem using this method. Later, Caffarelli,
Gidas and Spruck [4] classified all positive solutions to equation (1.3) by sharpening the
method of moving plane. Their result plays a crucial role in establishing the compactness
results for the solution set to Yamabe problem, see, e.g., Schoen [17], Li and Zhu [14],


