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Abstract. Two-dimensional global (BiGlobal) stability in the region of the minor axis
is investigated in the case of hypersonic elliptic cones with major-minor axis ratios of
2 : 1 and 3 : 1 at Mach number 6.0, and the BiGlobal-eN method is proposed to predict
the transition location of the boundary layer. Matrix-free BiGlobal stability analysis is
used to find unstable modes, including the Y-mode and the Z-mode. The growth rates
in the streamwise-frequency plane for these modes are obtained. The Nmax all factor
is proposed, which represents the maximum amplification factor that all BiGlobal un-
stable modes can reach. Using a comparison of the Nmax all factor with the transition
location measured in a wind tunnel experiment for the 2 : 1 elliptic cone, the transition
prediction criterion is determined, i.e., Ntr = 8.6. In the transition position, the ampli-
fication factors of several modes reach a level close to 8.6, which implies that none of
them has the absolute superiority sufficient to cause the transition itself. Finally, the
BiGlobal-eN method is employed to predict the transition location in the region of the
minor axis of the 3 : 1 elliptical cone. It is found that a larger major-minor axis ratio
leads to stronger instability and an earlier transition.
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1 Introduction

The prediction of the transition of a boundary layer in the region of the minor axis of a
hypersonic elliptical cone is closely related to practical engineering problems, and it is
of great significance for scientific developments. On the one hand, to develop a next-
generation hypersonic vehicle, a transition prediction in the region of the minor axis of
an elliptical cone is a key problem to be solved. On the other hand, transition prediction
in the region of the minor axis depends on global stability analysis, at the leading edge
of the study of fluid mechanics.

The stability of the boundary layer in the region of the minor axis of a hypersonic
elliptic cone is quite complicated. Even at a zero angle of attack, the streamlines on both
sides of the minor axis draw close to the axis to form streamwise vortices [1], as shown
in Fig. 1. As Li et al. [1] pointed out, the boundary layer here changes significantly along
both the wall-normal and circumferential directions, such that the conventional stability
analysis that only takes wall-normal variation into consideration is not meaningful. It is
necessary to use the global stability analysis, which takes both wall-normal and circum-
ferential variation into consideration [2–4]. Consequently, if the eN method predicts the
transitions herein, the N factors should also be obtained through global stability analysis.

Figure 1: (color online) Basic flow of hypersonic elliptic cone HIFiRE-5 [1].

It took a historical process to understand the instability of the boundary layer and the
transition in the region of the minor axis of the hypersonic elliptical cone. Basically, the
historical process includes three stages. In the first stage, the streamwise vortices were
not noticed. In the second stage, although the vortices were noticed, the global instability
analysis method was not developed. In the last stage, the global stability instability anal-
ysis method was developed and adopted. The detailed introduction of the three stages is
provided as below.

In earlier times, the streamwise vortices in the region of the minor axis were not no-
ticed. Conventional linear stability theory (LST), which only considered wall-normal
variation in the basic flow, was employed to study stability and predict transitions in the
boundary layers of the elliptic cones, and the influence of crossflow was also considered.
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Although studies along these lines provided some reliable results in certain regions apart
from the minor axis, they could not easily explain instability in the region of the minor
axis without the attention of the drastic circumferential variation in the boundary layers.
Some scholars have attempted to explain the instability in the region of the minor axis in
terms of second mode instability, but the results were not convincing. Lyttle and Reed [5]
studied boundary layer stability for the elliptic cones with ratios of the major to the mi-
nor axis of 2:1, 3:1, and 4:1 at Mach number 4 and considered the influence of crossflow.
They found that the wall-normal inflection points of the velocity profiles occurred near
to the minor axis, which implies that the boundary layers were unstable here. Kimmel
et al. [6] investigated stability in three cases with major-minor axis ratios of 1.5 : 1, 2 : 1,
and 4 : 1 at Mach number 7.93 and found crossflow instabilities in all three cases. Poggie
et al. [7] undertook an experiment to obtain the frequencies of the unstable disturbances
close to the minor axis, with results that were consistent with those of Kimmel et al. [6].
Both Poggie et al. [7] and Kimmel et al. [6] found that the frequencies of the unstable
disturbances near the minor axis were closer to those of the second mode disturbances,
but no stronger evidence was provided.

Later, others began to recognize the important influence of streamwise vortices in the
region of the minor axis on the boundary layer instability. However, due to a lack of
an appropriate method of analysis for global stability, the traditional LST and the con-
ventional eN methods were used to study the stability and transition in the region of the
minor axis. Schmisseur et al. [8] found the streamwise vortices in the region of the mi-
nor axis in the experiment for the 4 : 1 elliptical cone at Mach number 4 and supposed
that the growth in disturbance was related to the vortices. Poggie et al. [7] also noticed
the streamwise vortices in the experiment for the 4 : 1 elliptical cone at Mach number 8
and observed the earlier transition in the region of the minor axis than that in the major
axis region. Huntley and Smits [9] photographed the streamwise vortices in the region
of the minor axis in an experiment that involved a 4 : 1 elliptical cone at Mach number 8
and showed that the crossflow instability should not play the key role here. Gosse and
Kimmel [10] identified the streamwise vortices in the region of the minor axis of the 2 : 1
elliptic cone at Mach number 7.95 and suggested that the stability analysis there should
take the circumferential variation in the basic flow into consideration. Some studies fo-
cused on the HIFiRE-5 elliptical cone with major-minor axis ratio of 2 : 1 [11–15], with
detailed parameters provided by Gosse and Kimmel [16]. Wheaton et al. [17] and Ju-
liano et al. [18] undertook experiments on the HIFiRE-5 model at Mach number 6 in the
quiet wind tunnel at Purdue University, and observed streamwise vortices along the re-
gion of the minor axis. They found that the frequencies of the unstable disturbance at
the streamwise vortices were consistent with those of second mode waves but did not
provide compelling evidence that the unstable disturbances were Tollmien–Schlichting
(T-S) waves. Li et al. [1] conducted numerical simulations to obtain the basic flow of the
HIFiRE-5 model under experimental conditions in the wind tunnel and noticed stream-
wise vortices in the region of the minor axis in the numerical results. Li et al. [1] claimed
that conventional stability analysis that only took into account the wall-normal profiles of
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the basic flow was not meaningful for addressing stability problems in the region of the
minor axis due to the strong circumferential variation in the basic flow. The eN method,
which is based on traditional linear stability analysis is also unsuitable to predict tran-
sitions here. Instead, it is necessary to apply global stability analysis [19–21] and the eN

method based on global stability analysis.
In the following years, scholars began to undertake BiGlobal stability analysis in the

region of the minor axis and found unstable modes. Choudhari et al. [22] carried out
numerical simulations to obtain the basic flow in experimental conditions in the quiet
wind tunnel of Purdue University [17, 18] and obtained a set of the BiGlobal stability
analysis results in the region of the minor axis. Choudhari et al. [22] interpreted this as
a new kind of unstable mode rather than a second mode perturbation. The approach of
Paredes and Theofilis [23] was a milestone on the route to solving this problem. They
undertook a BiGlobal stability analysis at a streamwise location of the 2 : 1 elliptic cone
at Mach number 7 and found four unstable modes in the region of the minor axis, in-
cluding two sinuous modes and two varicose modes. Furthermore, they provided the
specific method for the BiGlobal stability analysis. Paredes and Theofilis [24, 25] went
on to perform a BiGlobal stability analysis at multiple streamwise locations, although
they only showed the results of the most unstable sinuous mode and the most unstable
varicose mode at each position. It was also found that the growth rates of the unstable
modes were higher than those of the second mode waves, indicating that the unstable
BiGlobal modes are different from T-S waves. Zhang [26] undertook BiGlobal stability
analysis in the region of the minor axis of the HIFiRE-5 model and found two types of
unstable modes. The Y-mode is related to the wall-normal shear of the basic flow, while
the Z-mode corresponds to the spanwise shear. To explain the mechanism of generating
these unstable modes, Li et al. [27] showed the Fjortoft inflection point area of the basic
flow in the wall-normal-circumferential plane and found the eigenfunctions of the unsta-
ble modes just concentrated on the Fjortoft inflection point area, indicating that unstable
modes are caused by inviscid Fjortoft inflection point instability. Moyes and Reed [28]
studied the stability in the region of the minor axis of HIFiRE-5 model using a method
involving parabolized stability equations based on BiGlobal stability, and compared the
BiGlobal stability results with the direct numerical simulation (DNS) results and with
the experimental results to verify the reliability of their method. The verified method
of BiGlobal stability analysis was also applied to other problems, such as the crossflow
instability [29–31].

It should be noted that the matrix method was used in the above BiGlobal stability
analyses for the hypersonic boundary layers. In this method, an entire large sparse ma-
trix is obtained, and its eigenvalue problem is solved. Although only a short period of
time is necessary to calculate one case, significant memory is needed to save the matrix
elements, meaning that it must be calculated with one specific computer when the mesh
of the basic flow is fine enough. Zhang and Luo [32] used matrix-free BiGlobal stability
analysis to investigate incompressible boundary layers. Although the matrix-free method
requires a relatively long period to calculate one case, it does not employ large memory



L. Zhao, W. Zhou, X. Li, S. Zhang and Y. Zhang / Adv. Appl. Math. Mech., xx (2024), pp. 1-28 5

resources, so it can run across shared computers. This matrix-free method provides more
flexibility for the calculation of the BiGlobal stability analysis. Using this method, Zhang
and Luo [32] obtained two kinds of unstable modes, i.e., the inner mode and the outer
mode. The inner mode has relatively low phase velocity, and its eigenfunction concen-
trates at the bottom of the high-speed region. The outer mode has relatively high phase
velocity, and its eigenfunction concentrates at the two “shoulders” of the low-speed re-
gion. In this paper, the matrix-free method is extended to the BiGlobal stability analysis
of the compressible boundary layers, and BiGlobal stability in the regions of the minor
axis of the hypersonic elliptic cones is investigated by using this method. Furthermore,
the transition position in the region of the minor axis is predicted by the BiGlobal-eN

method based on BiGlobal stability analysis.
In this paper, elliptic cones with major-minor axis ratios of 2 : 1 and 3 : 1 are taken as

the models to study, and a Mach number of 6 is considered for oncoming flows. DNS is
used to obtain the basic flow fields. BiGlobal stability analyses are carried out for the ba-
sic flows with streamwise vortices in the regions of the minor axis, such that the growth
rates of the unstable modes are obtained. The N factors are calculated by integrating the
growth rates, and the Nmax all factor is obtained, which represents the maximum amplifi-
cation factor of all unstable modes. The Nmax all factor at the transition position measured
in the 2:1 elliptical cone experiment is taken as the criterion for transition prediction, i.e.,
the Ntr value. Finally, the BiGlobal-eN method is used to predict the transition in the re-
gion of the minor axis of the 3 : 1 elliptic cone. In Section II, the governing equations and
numerical methods of the matrix-free BiGlobal stability analysis are introduced, and the
reliability of the method is verified. In Section III, the results of BiGlobal stability analyses
in the regions of the minor axis of the elliptical cones and those of transition prediction
by the BiGlobal-eN method are presented.

2 Governing equations and numerical methods for BiGlobal
stability analysis

2.1 Governing equations

The governing equations of the matrix-free BiGlobal stability analysis can be derived in
three steps.

(i) For the dimensionless compressible Navier–Stokes (N-S) equations in the Cartesian
coordinate system, instantaneous quantities are expressed as the sum of steady ba-
sic flow and disturbance quantities. By subtracting the equations corresponding to
the steady basic flow from the equations for instantaneous quantities and neglect-
ing small quantities of high orders, we obtain the linear disturbance equations.

(ii) Using the features of basic flow in the region of the minor axis of the elliptic cone,
the linear disturbance equations are transformed into a curvilinear coordinate sys-
tem.
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(iii) Due to the characteristics of the streamwise slow variation in the basic flow, the dis-
turbances are written in the form of streamwise waves, and frequency-free BiGlobal
stability equations are obtained, which are the governing equations for matrix-free
BiGlobal stability analysis. The specific derivation process is given below.

2.1.1 Linear disturbance equations in a Cartesian coordinate system

Based on the dimensional compressible N-S equations in the Cartesian coordinate sys-
tem, the equations are nondimensionalized by according to the appropriate reference
scales. The reference scales taken in this paper includes length scale l∗ (the head radius
of the elliptic cone along the direction of the minor axis, 0.95mm), oncoming free-stream
velocity u∗e , free-stream density ρ∗e , free-stream temperature T∗e , dynamic viscosity µ∗e ,
and coefficient of thermal conductivity κ∗e . Subscript e represents the physical quantities
in the free-stream. Superscript ∗ represents dimensional quantities, and the quantities
without it are dimensionless. The dimensionless N-S equations are of the form
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where x, y, and z represent the streamwise, wall-normal, and spanwise directions in the
Cartesian coordinate system, respectively (see Fig. 2), and u, v, and w are the velocity
components in the three corresponding directions, and t represents time. The dimension-
less parameters in Eq. (2.1) include the Reynolds number Re= ρ∗e u∗e l∗

µ∗e
, the Prandtl number

Pr =
C∗pµ∗e

κ∗e
(C∗p represents the heat capacity under constant pressure), the Mach number

Ma = u∗e
a∗e

(a∗e=
√

γR∗T∗e is the acoustic velocity in the free stream), and the specific heat

ratio γ=
C∗p
C∗v

(C∗v represents the heat capacity at constant volume). The gas state equation
has been used, i.e., p= 1

γMa2 ρT, where p is pressure. The Stokes assumption is applied to

set the second viscosity coefficient λ∗, i.e., λ∗=− 2
3 µ∗. The Sutherland law is employed

to calculate the dynamic viscosity µ and the coefficient of thermal conductivity κ, which
is of the form
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where C∗1 and C∗2 are constants, i.e., C∗1 =C∗2 =110.4K.
To derive the linear disturbance equation in the Cartesian coordinate system, we can

express the instantaneous quantities in Eq. (2.1) as the sum of laminar basic flow and
disturbance quantities, namely

u= ū+u′xyz, v= v̄+v′xyz, w= w̄+w′xyz, ρ= ρ̄+ρ′, T= T̄+T′, µ= µ̄+µ′, (2.3)

where superscript represents basic flow, superscript ′ represents the disturbance quan-
tities, and subscript xyz indicates the disturbance velocity components in the xyz coordi-
nate system. By substituting Eq. (2.3) into Eq. (2.1) and subtracting equation of the steady
basic flow, which corresponds to the steady basic flow, one can obtain the disturbance
equations. Furthermore, by neglecting higher-order terms in the disturbance equations,
we can obtain linear disturbance equations in the Cartesian coordinate system, which can
be expressed in the form
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)
=0, (2.4)
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where φxyz=(ρ′,u′xyz,v′xyz,w′xyz,T′)T denotes the disturbance vector, and Γxyz, Axyz, Bxyz,
Cxyz, Dxyz, Vxx, Vyy, Vzz, Vxy, Vxz and Vyz are the coefficient matrices. The matrices are
given in Appendix A.

2.1.2 Linear disturbance equations in curvilinear coordinates

Due to the features of basic flow in the region of the minor axis of the hypersonic ellip-
tical cone, a curvilinear coordinate system is used. The linear disturbance equations can
be acquired in two steps in a curvilinear coordinate system, enabling BiGlobal stability
analysis in the region of the minor axis. The first step is to create an appropriate Cartesian
coordinate system and obtain the linear disturbance equations in this coordinate system.
The second step is to develop an appropriate curvilinear coordinate system and obtain
the linear disturbance equations in this system via coordinate transformation.

Figure 2: Schematic sketch of the coordinate systems.

The oncoming flow direction is x, and the corresponding Cartesian coordinate sys-
tem xyz is shown in Fig. 2. However, in the boundary layer of the region of the minor
axis, the basic flow is nearly parallel to the meridian X for the minor axis (see Fig. 2),
and the disturbances also propagate downstream along the meridian. Therefore, merid-
ian X at the minor axis is taken as the streamwise direction, and wall-normal direction
Y is perpendicular to the wall at the minor axis, such that a new Cartesian coordinate
system XYZ is obtained, as shown in Fig. 2. The XYZ coordinate system can be obtained
by rotating the xyz coordinate system. The transformation between the xyz and XYZ
coordinate systems has the form

X= xcos(θ)+ysin(θ),
Y=ycos(θ)−xsin(θ),
Z= z,

where θ is the half-cone angle along the minor axis. The basic flow in the XYZ coordinate
system can be obtained by the following equations

Ū= ūcos(θ)+ v̄sin(θ),
V̄= v̄cos(θ)−ūsin(θ),
W̄= w̄,
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where Ū, V̄, and W̄ represent the velocity components in the X, Y, and Z directions,
respectively. Accordingly, the disturbance velocity components in the three directions
are u′, v′, and w′, respectively. Then the linear disturbance equations, i.e., Eq. (2.4), are
transformed into the XYZ coordinate system in the following form

VXX
∂2φ

∂X2 +VYY
∂2φ

∂Y2 +VZZ
∂2φ

∂Z2 +VXY
∂2φ

∂X∂Y
+VXZ
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Γ
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∂φ

∂X
+B

∂φ

∂Y
+C

∂φ

∂Z
+Dφ

)
=0, (2.5)

where φ=(ρ′,u′,v′,w′,T′)T denotes the disturbance vector in the XYZ coordinate system,
and Γ, A, B, C, D, VXX, VYY, VZZ, VXY, VXZ, and VYZ are the coefficient matrices. The
matrix elements are same as those in Eq. (2.4) except that they are in the new Cartesian
coordinate system XYZ.

Because the surface of the elliptic cone is curves in the circumferential direction, it is
necessary to use a curvilinear coordinate system ξηζ, where ζ represents the circumfer-
ential direction, as shown in Fig. 2. The ξ direction coincides with the X direction, and
the η direction represents the wall-normal direction, which is perpendicular to the wall.
The transformation relationship between the curvilinear coordinate system ξηζ and the
Cartesian coordinate system is of the form

ξ= ξ (X),
η=η(Y,Z),
ζ= ζ (Y,Z).

Then we can obtain the linear disturbance equations in the ξηζ curvilinear coordinate
system, namely

Vξξ
∂2φ

∂ξ2 +Vηη
∂2φ

∂η2 +Vζζ
∂2φ

∂ζ2 +Vξη
∂2φ
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∂φ

∂z
+Dφ

)
=0, (2.6)

where φ=(ρ′,u′,v′,w′,T′)Tdenotes the disturbance vector in the XYZ coordinate system,
and Aξηζ , Bξηζ , Cξηζ , Vξξ , Vηη , Vζζ , Vξη , Vξζ , and Vηζ represent the coefficient matrices.
The matrices are shown in Appendix B.

2.1.3 Frequency-free BiGlobal linear stability equations

Due to the streamwise vortices in the region of the minor axis of the elliptical cone,
the variation in basic flow along the wall-normal and circumferential directions is quite
strong. However, the basic flow only changes slowly along the streamwise direction.
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Therefore, we can apply the hypothesis of the quasi-parallel flow, such that the distur-
bances can be expressed as the form of streamwise waves, namely,

φ(ξ,η,ζ,t)= φ̃(η,ζ,t)eiαξ+c.c., (2.7)

where α represents the streamwise wavenumber, φ̃=
(
ρ̃,ũ,ṽ,w̃,T̃

)T represents the stream-
wise wave vector, and c.c. represents the complex conjugate. By substituting Eq. (2.7) into
the linear disturbance equations, i.e., Eq. (2.6), we obtain the equations for φ̃ in the form

Γ
∂φ̃

∂t
+ B̃

∂φ̃

∂η
+C̃

∂φ̃

∂ζ
+Vηη

∂2φ̃

∂η2 +Vζζ
∂2φ̃

∂ζ2 +Vηζ
∂2φ̃

∂η∂ζ
+D̃φ̃=0, (2.8)

where B̃, C̃, and D̃ are the coefficient matrices. The matrices can be expressed as below
B̃=B+iαVξη ,
C̃=C+iαVξζ ,
D̃=D+iαA−α2Vξξ .

Eq. (2.8) is the governing equation for the matrix-free BiGlobal linear stability analysis,
i.e., frequency-free BiGlobal linear stability equations.

For Eq. (2.8), the no-slip and isothermal boundary conditions are adopted on the wall,
namely

ũ= ṽ= w̃= T̃=0 at η=0.

At the top boundary of the computational domain, which is far from the wall, the pertur-
bation amplitude tends to zero, so the boundary condition is taken as

ρ̃= ũ= ṽ= w̃= T̃=0 as η→∞.

2.2 Numerical methods

2.2.1 Numerical differential methods

To solve Eq. (2.8), we use the following numerical methods. In the circumferential direc-
tion, the spectral method is employed, and the Fourier series is taken as the base function
family, which is of the form

f (η,ζ,t)=
+∞

∑
n=−∞

^

f (η,t)einβζ ,

where f and
^

f represent the functions in the physical and spectral space, respectively,
and β is the circumferential fundamental wavenumber. In the wall-normal direction,



L. Zhao, W. Zhou, X. Li, S. Zhang and Y. Zhang / Adv. Appl. Math. Mech., xx (2024), pp. 1-28 11

the fourth-order central difference schemes are used for the first and second derivatives,
namely (

∂ f
∂η

)
j
=

f j−2−8 f j−1+8 f j+1− f j+2

12∆η
+O((∆η)4),(

∂2 f
∂η2

)
j
=
− f j−2+16 f j−1−30 f j+16 f j+1− f j+2

12∆η2 +O((∆η)4).

We can only use lower order schemes near the wall. At the point j=N−1, the third-order
schemes were adopted, which are of the form(

∂ f
∂η

)
N−1

=
fN−3−6 fN−2+3 fN−1+2 fN

6∆η
+O((∆η)3)(

∂2 f
∂η2

)
N−1

=
fN−2−2 fN−1+ fN

∆η2 +O((∆η)3).

At the point j=1, the difference schemes are(
∂ f
∂η

)
1
=
−2 f0−3 f1+6 f2− f3

6∆η
+O((∆η)3),(

∂2 f
∂η2

)
1
=

f0−2 f1+ f2

∆η2 +O((∆η)3).

At the top boundary point j = N, the second-order schemes are used, which are of the
form (

∂ f
∂η

)
N
=

fN−2−4 fN−1+3 fN

6∆η
+O((∆η)2),(

∂2 f
∂η2

)
N
=

fN−2−2 fN−1+ fN

∆η2 +O((∆η)2).

At the wall point j=0, the difference schemes are(
∂ f
∂η

)
0
=
−3 f0+4 f1− f2

2∆η
+O((∆η)2)(

∂2 f
∂η2

)
0
=

f0−2 f1+ f2

∆η2 +O((∆η)2).

The third-order difference scheme is used for time splitting, namely(
∂ f
∂t

)
i
=

11
6∆t

fi+

(
−3
∆t

)
fi−1+

3
2∆t

fi−2+
−1
3∆t

fi−3+O((∆t)3).
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2.2.2 Eigenvalue problem of matrix-free BiGlobal stability analysis

The frequency-free BiGlobal linear stability equations Eq. (2.8) are linear equations con-
cerning φ̃. Therefore, for a fixed wavenumber α, the linear stability equations define the
linear evolution operator L(t,α), which can be expressed as

φ̃(η,ζ,t)=L(t,α)φ̃(η,ζ,0). (2.9)

Taking a fixed time interval T0, we can obtain the linear evolution relationship as

φ̃(η,ζ,T0)=L(T0,α)φ̃(η,ζ,0). (2.10)

L(T0,α) is still a linear operator, so it has eigenmodes, which can be expressed as

L(T0,α)φ̂(η,ζ)= λ̂φ̂(η,ζ), (2.11)

where λ̂ and φ̂(η,ζ) represent the eigenvalue and eigenfunction for an eigenmode, re-
spectively.

In another way, due to Eq. (2.8), for an eigenmode, the evolution of the corresponding
φ̃ from t=0 to t=T0 can also be described in the form of the complex frequency

φ̃(η,ζ,T0)= e−iωT0 φ̃(η,ζ,0), (2.12)

where ω=ωr+ωi is the complex frequency, the real part ωr denotes the real frequency,
and the imaginary part ωi denotes the growth rate for temporal mode problem. Then the
eigenmode can be described as

L(T0,α)φ̂(η,ζ)= e−iωT0 φ̂(η,ζ). (2.13)

From Eqs. (2.11) and (2.13), we obtain the relationship between the eigenvalue λ̂ and the
frequency ω as

λ̂= e−iωT0 . (2.14)

We use ω to represent the eigenvalue for the temporal mode problem below.
We can obtain the evolution of φ̃ from t = 0 to t = T0 by solving Eq. (2.8), and we

can obtain the eigenvalues λ̂ and eigenfunctions φ̂(η,ζ) of the linear operator L(T0,α)
using the Arnoldi iterative method. Here, the Arnoldi method is implemented by calling
the open source package ARPACK. The detailed numerical methods for this step were
provided by Lehoucq et al. [33] and Zhang and Luo [32], and they are not repeated here.

2.2.3 Verification of matrix-free BiGlobal stability analysis method for compressible
flows

Zhao et al. [29] applied matrix BiGlobal stability analysis to study the stability of the
hypersonic streaky boundary layer over a flat plate with a blunt leading edge, and the re-
sults were verified by the comparison with the DNS results. In this paper, our matrix-free
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Table 1: Parameters of the hypersonic streaky boundary layer.

Ma T∗e (K) Re (Nose radius is taken as the length scale) Pr
5.96 87.0 3.34×104 0.72

Table 2: Eigenvalues of the unstable modes of the hypersonic streaky boundary layer.

Mode Method α ωr ωi

1

Matrix-free BiGlobal 0.9 0.609143 0.05385(Current method)
Matrix BiGlobal 0.9 0.609102 0.05386(Zhao et al. [29])

2

Matrix-free BiGlobal 0.9 0.624851 0.03919(Current method)
Matrix BiGlobal 0.9 0.624826 0.03925(Zhao et al. [29])

3

Matrix-free BiGlobal 0.9 0.650545 0.01337(Current method)
Matrix BiGlobal 0.9 0.650413 0.01311(Zhao et al. [29])

BiGlobal stability method was employed for the stability analysis of the streaky bound-
ary layer, and the results are compared to those of Zhao et al. [29] for verification. The
parameters of the hypersonic streaky boundary layer are listed in Table 1.

The eigenvalues of three unstable modes obtained using the current matrix-free BiGlobal
method are shown in Table 2 and are consistent with those of Zhao et al. [29] by the matrix
BiGlobal method. The above verification confirms that the matrix-free BiGlobal stability
analysis is reliable.

3 Results and discussion

3.1 Elliptical cone a ratio of major to minor axis of 2 :1

3.1.1 Model parameters and basic flow

In this paper, the 2 : 1 elliptic cone model is a 38.1% scale model of HIFiRE-5. Juliano et
al. [18] performed experimental investigation of the 38.1% model in a wind tunnel, so
we can compare our results with the experimental data. The cross section of the cone is
elliptic, and the ratio of major-minor axis is 2 : 1. Along the direction of the minor axis,
the radius of the nose is 0.95mm, and the half cone angle θ is 7◦. The length of the model
is 328mm, and the minor axis radius of the cross section is 41mm at the tail end of the
model. More specific parameters were provided by Juliano et al. [18]. Although this
vehicle model is smaller than that of Paredes and Theofilis [23–25], we can still compare
our results with those of Paredes and Theofilis [23–25] qualitatively.
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Table 3: Conditions for the basic flow calculation.

Ma Reunit(m−1) T∗e (K) T∗w(K) AOA(◦)
6.0 10.2×106 52.0 300.0 0.0

The working conditions here are the same as those for Juliano et al. [18], as shown
in Table 3. In the table, Reunit = ρ∗e u∗e /µ∗e is the unit Reynolds number, T∗w is the wall
temperature, and AOA is the angle of attack. At a zero angle of attack, the basic flow is
symmetrical, so it is sufficient to take a quarter of the model and to adopt the symmetric
boundary condition in the circumferential direction. The free-stream condition is applied
in the far field, and the no-slip and isothermal conditions are employed on the wall. The
outlet of the computational domain is taken at x∗=381mm, and the linear extrapolation
condition is adopted at the outlet. We take 400, 300, and 300 grid points in the streamwise,
wall-normal, and circumferential directions, respectively. In the wall-normal direction,
more than 100 grid points are taken in the boundary layer. Li et al. [1] conducted a
comprehensive analysis of mesh convergence. According to results of Li et al. [1], our
grid satisfies the convergence condition. In this paper, the basic flow is obtained by DNS,
and detailed numerical methods were presented by Zhao [34] and Song et al. [35].

Fig. 3 shows the streamwise velocity distribution in the wall-normal-spanwise plane
at different streamwise locations, where Ū represents the local streamwise velocity, and

Figure 3: (color online) Contour of velocity Ū/Ūmax in the wall-normal-spanwise plane in the region of the
minor axis. (a) X=100. (b) X=140. (c) X=174. (d) X=237. (e) X=282. (f) X=309.
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Ūmax representes the maximum stream velocity in the flow field. The figure indicates that
the streamwise evolution of vortices is quite slow. From X=105, the spanwise width of
the streamwise vortices continue unchanged, and the wall-normal height grows slowly.
Therefore, the dependence of the basic flow on the streamwise direction X can be treated
as being parametric when the BiGlobal stability in the wall-normal-spanwise plane is
considered in the region of the minor axis, as noted by Zhang et al. [36].

3.1.2 Results of BiGlobal stability analysis

We perform BiGlobal stability analysis of the basic flow in the region of the minor axis
at X=191 and find two kinds of unstable outer modes, i.e., the Y-mode and the Z-mode,
and we do not find an unstable inner mode. The eigenfunctions of the Y-mode and the
Z-mode and the contour of the basic flow Ū are shown in Fig. 4. The eigenfunction
of the Y-mode is concentrated on two shoulders of the mushroom, and stretches along
the spanwise direction, as shown in Fig. 4(a). This means that the Y-mode is caused
by the shear of the basic flow along the wall-normal direction, giving rise to its name.
Fig. 4(b) shows that the eigenfunction of the Z-mode is concentrated on the waist of the
mushroom, and the eigenfunction stretches along the wall-normal direction. This implies
that the Z-mode is caused by the shear of the basic flow along the spanwise direction, and
this is why it is called Z-mode.

The eigenfunctions of the unstable modes and the Fjortoft inflection points of the
basic flow in the Y-Z plane are shown in Fig. 5. The Fjortoft inflection points satisfy the
conditions 

∂

∂s

(
ρ

∂ŪI

∂s

)
=0,

∂

∂s

(
ρ

∂ŪI

∂s

)
(Ū−ŪI)<0,

(3.1)

where s is the gradient direction of the basic flow Ū in the Y-Z plane, ∂/∂s is the derivative
along the gradient direction, and ŪI is the basic flow at the inflection point. In Fig. 5, the

Figure 4: (color online) Contour of eigenfunctions |û|/|û|max for the Y-mode and the Z-mode. The color
contours represent eigenfunctions. The white lines are the contour lines of the basic flow Ū. (a) Y-mode. (b)
Z-mode.
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Figure 5: (color online) Eigenfunctions of the unstable modes and Fjortoft-inflection-points of the basic flow.
Black lines: contour of the eigenfunction |û|/|û|max of the unstable modes. Red contour: positive second
derivative of the basic flow in the gradient direction in Y-Z plane. Blue contour: negative second derivative.
White contour: second derivative is zero. Green circles: Fjortoft inflection points. (a) Y-mode. (b) Z-mode.

Figure 6: (color online) Eigenfunctions of the varicose type (a), (b), and (c) and sinuous type (d), (e), and (f))
Y-modes. (a) and (d): ûr. (b) and (e): ûi. (c) and (f): |û|. The results are normalized by |û|max.

black lines represent the contour of the eigenfunction modulus |û|/|û|max, and the green
circles mark the Fjortoft inflection points. For both the Y-mode and the Z-mode, the
eigenfunctions concentrate on the Fjortoft inflection points, indicating that the instability
of the modes are caused by the inflectional instability of the shear flow.

In this paper, multiple unstable Y-modes and Z-modes are found. The Y-modes can
be classified into two types, sinuous and varicose, as can the Z-modes. The eigenfunction
û of the sinuous mode is anti-symmetric in the spanwise direction, while that of the
varicose mode is symmetric. Fig. 5 shows the eigenfunction û of a varicose Y-mode at a
streamwise position (X=191), including the real part ûr, imaginary part ûi, and modulus
|û|, along with the results of a sinuous Y-mode. The eigenfunction shape of sinuous Y-
mode in Fig. 5 is qualitatively consistent with that of the anti-symmetric mode obtained
by Paredes and Theofilis [23–25] for a larger vehicle model. Similarly, the eigenfunction
shape of varicose Y-mode in Fig. 5 is qualitatively consistent with that of the symmetric
mode in references [23–25]. The modulus |û| of the varicose mode is the same as that of
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Figure 7: (color online) Eigenfunctions of the varicose type (a), (b), and (c) and sinuous type (d), (e), and (f)
Z-modes. (a) and (d): ûr. (b) and (e): ûi. (c) and (f): |û|. The results are normalized by |û|max.

the sinuous mode. However, both the real part ûrand the imaginary part ûi of the varicose
modes are symmetrical in the spanwise direction, while those of the sinuous mode are
anti-symmetrical. Similarly, the eigenfunctions of the varicose type and sinuous type
Z-modes are shown in Fig. 7.

The matrix-free BiGlobal stability analysis is performed with respect to the temporal
mode problem. However, for the disturbance evolution in the boundary layer, it is more
appropriate to describe the growth of unstable modes via the spatial mode. It is therefore
necessary to obtain the growth rate of spatial mode −αi. In this paper, we calculate −αi
using the Gaster transform [37], which is of the form

−αi =ωi/cg, (3.2)

where cg = ∂ωr/∂α is the group velocity. We apply the approximation cg≈∆ωr/∆α to
calculate the group velocity, and ∆α is taken as 0.001, which is small enough to obtain the
converged numerical results. We only show the spatial mode results below.

We find several unstable modes, and we focus on six of them to discuss in this paper,
namely the three most unstable Y-modes (Y-mode 1, Y-mode 2, and Y-mode 3) and the
three most unstable Z-modes (Z-mode 1, Z-mode 2, and Z-mode 3). Y-mode 1 and Z-
mode 1 are varicose, and the other four are sinuous. Fig. 8 shows contours of the growth
rates−αi of the six modes in the streamwise-frequency (X-F) plane, where F is the dimen-
sionless frequency defined as F= 2π f ∗v∗e /U∗e

2, where f ∗ is dimensional frequency, and
v∗e is kinematic viscosity. The growth rates of Y-mode 1 and Y-mode 2 are relatively high,
and that of Y-mode 3 is low. The results for the Z-modes are similar, but the unstable
frequency bandwidths are narrower.

3.1.3 Results of BiGlobal-eN method

The traditional eN method [38, 39] is based on the traditional stability analysis. Distur-
bance amplification factor N is obtained by integrating the growth rate, and the envelope
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Figure 8: (color online) Contours of the growth rate −αi of the unstable modes in the X−F plane. (a) Y-mode
1. (b) Y-mode 2. (c) Y-mode 3. (d) Z-mode 1. (e) Z-mode 2. (f) Z-mode 3.

of the N factor, i.e., the Nmax factor, is compared to the critical value Ntr, such that the
transition location can be predicted. We borrow the idea of the traditional eN method,
but we calculate the N factors of unstable modes based on the results of the BiGlobal
stability analysis. So this method is named as BiGlobal-eN method.

The N factor is defined as the integral of the growth rate of an unstable mode at the
frequency F, which is expressed as

N(F,X)=
∫ X

X0

−αidX, (3.3)

where X0 is the critical location where the disturbance becomes unstable. The N factor
represents the logarithm of the growth multiple of the disturbance, namely

N= ln
[

A(X)

A(X0)

]
, (3.4)

where A is the amplitude of the disturbance.
Fig. 9 shows the N factor contours of the six unstable modes in the X−F plane. The

N factors grow up to the cone tail. The N factors of Y-mode 1, Y-mode 2, Z-mode 1, and
Z-mode 2 are relatively high, while the results for Y-mode 3 and Z-mode 3 are low. For
Y-mode 1 and Y-mode 2, the frequencies F corresponding to the maximum N factor are
about 2.5×10−5. For Z-mode 1 and Z-mode 2, the corresponding frequencies F are about
0.6×10−5.
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Figure 9: (color online) Contours of factor N in the X−F plane. (a) Y-mode 1. (b) Y-mode 2. (c) Y-mode 3.
(d) Z-mode 1. (e) Z-mode 2. (f) Z-mode 3.

Continuing to use the traditional eN method as a reference, we plot the maximum N
factor at each streamwise location, i.e., the Nmax factor and the Nmax factors of the six
unstable modes in Fig. 10(a). For one mode, the Nmax factor curve in the figure is also the
envelope of the N factor curves at different frequencies. The Nmax factor of each mode
increases monotonically along the streamwise direction until the cone tail, and the Nmax
curves of several modes intersect. For the four most unstable modes, i.e., Y-mode 1, Y-
mode 2, Z-mode 1, and Z-mode 2, the Nmax factors reach about 10.5. The Nmax factor of
Z-mode 3 grows to about 9, and that of Y-mode 3 only reaches about 5.5.

Fig. 10(a) shows the growth of several unstable modes found via the BiGlobal stability
analysis, but it is not simple to predict the transition based on the several Nmax curves in
the figure. To provide an easy method of transition prediction, we take the envelope of
the Nmax curves to obtain just one curve, i.e., the Nmax all curve, as shown in Fig. 11. The
Nmax all curve represents the maximum amplification factor that all unstable modes can
achieve under conservative estimates. To predict the transition location, we still require
the transition prediction criterion, i.e., the critical value Ntr. According to the basic idea
of the eN method, the transition criterion should be calibrated by experiment. The wind
tunnel experiment of Juliano et al. [18] was undertaken under the same conditions as
our calculation above. The experimental results showed that the transition position in
the minor axis region is Xtr = 284, where Nmax all is 8.6, as shown in Fig. 11. Therefore,
Ntr = 8.6 is taken as the transition criterion of the BiGlobal-eN method. Furthermore,
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Figure 10: Nmax factors for the 2 :1 and 3 :1 elliptic cones. (a) 2 :1. (b) 3 :1.

Fig. 10(a) shows that the Nmax factor of Z-mode 1 is the highest at the transition location,
which is 8.6. However, the Nmax factors of the other three modes, i.e., Y-mode 1, Y-mode
2, and Z-mode 2, are also quite close to 8.6 at X=284. This indicates that several modes
are sufficiently or almost sufficiently amplified to trigger transition at this location, and
none of them has an absolute leading superiority to allow it to cause transition itself.

3.2 Elliptical cone with major-minor axis ratio of 3 :1

Using the 2 : 1 elliptic cone model in the previous section, the length of the major axis
is changed to three times that of the minor-axis, and the other parameters remain un-
changed, such that we obtain the 3:1 elliptic cone model. The oncoming flow parameters
are the same as those in the 2:1 elliptic cone, and basic flow is also obtained by DNS. The
basic flow is similar to that of the 2:1 elliptic cone, and there are also streamwise vortices
in the region of the minor axis.

The BiGlobal stability analysis shows that there are also two kinds of unstable outer
modes in the region of the minor axis, i.e., the Y-mode and Z-mode, and no unstable
inner mode is found. Similar to the results of the 2 : 1 elliptical cone, the unstable Y-
modes include varicose type and sinuous type, as do the Z-modes. However, the unstable
modes for the 3 : 1 elliptic cone are stronger than those for the 2 : 1 elliptic code. We still
take six modes to study, including the three most unstable Y-modes and the three most
unstable Z-modes. Fig. 10(b) shows the Nmax factors of the six unstable modes along the
streamwise direction. At the tail of the elliptical cone, the Nmax factors of Y-mode 1, Y-
mode 2, Z-mode 1, and Z-mode 2 reach about 13. The Nmax factor of Z-mode 3 rises to
about 14, while that of Y-mode 3 only reaches about 7.5. The Nmax factors for the 3 : 1
elliptical cone are significantly higher than those for the 2 : 1 elliptical cone. This implies
that the larger ratio of major to minor axis could promote the growth of the unstable
modes in the region of the minor axis.
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Figure 11: Nmax all factors for the 2 :1 and 3 :1 elliptic cones.

Fig. 11 shows the envelope of the Nmax factors of the unstable modes, i.e., the Nmax all
factor. The results of the 2:1 elliptical cone are also plotted in the figure. The Nmax all factor
of the 3 : 1 elliptic cone is always higher than that of the 2 : 1 elliptic cone, indicating that
larger major to minor axis ratios lead to earlier transitions at the minor axis. According
to the calibrated transition criterion Ntr =8.6, the predicted the transition position in the
region of the minor axis of the 3 : 1 elliptic cone is Xtr =225, which is about 20% forward
of the transition location of the 2 : 1 elliptic cone. This means that a larger ratio of major
to minor axis leads to an earlier transition in the region of the minor axis of the elliptic
cone.

4 Conclusions

In this paper, we employ matrix-free BiGlobal stability analysis to investigate the stability
of the boundary layer with streamwise vortices in the region of the minor axis of the
hypersonic elliptic cones with ratios of major to minor axis of 2 : 1 and 3 : 1. From the
results of the stability analysis, we apply the BiGlobal-eN method to predict the transition
position, and we draw the following conclusions.

(1) There are two kinds of unstable outer modes in the boundary layer in the region of
the minor axis of the hypersonic elliptic cones, namely the Y-mode and the Z-mode,
and no unstable inner mode is found.

(2) The eigenfunctions of the unstable modes concentrate on the Fjortoft inflection
point areas in the wall-normal-spanwise plane, indicating that the BiGlobal unsta-
ble modes in the region of the minor axis are caused by the inflectional instability
of the basic flow.

(3) For one unstable mode, the Nmax factor can be obtained by taking the envelope of
the N factor curves at different frequencies, indicating the maximum amplification
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factor that the mode can achieve. The Nmax all factor can be obtained by taking
the envelope of the Nmax factor curves of different modes, indicating the maximum
amplification factor that all of the unstable modes can achieve. The position where
the Nmax all factor curve reaches the critical value Ntr is considered the transition
position. Using the location of the transition of the 2:1 elliptic cone measured in the
wind tunnel experiment of Juliano et al. [18], the critical value is taken as Ntr =8.6.
At the transition location, the Nmax factors of several modes are close to the critical
level of 8.6, indicating that none of them plays the dominant role in causing the
transition.

(4) The BiGlobal-eN method is employed to predict the transition location in the region
of the minor axis of the 3 : 1 elliptic cone. A comparison of the results of the 3 : 1
elliptic cone with those of the 2:1 elliptical cone indicates that a larger major-minor
axis ratio causes stronger instability and an earlier transition.

Appendix A: The coefficient matrices in Eq. (2.4)

The coefficient matrices in Eq. (2.4) are shown as below

Vxx =


0 0 0 0 0
0 − 4

3
1

Re µ̄ 0 0 0
0 0 − 1

Re µ̄ 0 0
0 0 0 − 1

Re µ̄ 0
0 0 0 0 − 1

RePr µ̄

, Vyy =


0 0 0 0 0
0 − 1

Re µ̄ 0 0 0
0 0 − 4

3
1

Re µ̄ 0 0
0 0 0 − 1

Re µ̄ 0
0 0 0 0 − 1

RePr µ̄

,

Vxy =


0 0 0 0 0
0 0 − 1

3
1

Re µ̄ 0 0
0 − 1

3
1

Re µ̄ 0 0 0
0 0 0 0 0
0 0 0 0 0

, Vzz =


0 0 0 0 0
0 − 1

Re µ̄ 0 0 0
0 0 − 1

Re µ̄ 0 0
0 0 0 − 4

3
1

Re µ̄ 0
0 0 0 0 − 1

RePr µ̄

,

Vxz =


0 0 0 0 0
0 0 0 − 1

3
1

Re µ̄ 0
0 0 0 0 0
0 − 1

3
1

Re µ̄ 0 0 0
0 0 0 0 0

, Vyz =


0 0 0 0 0
0 0 0 0 0
0 0 0 − 1

3
1

Re µ̄ 0
0 0 − 1

3
1

Re µ̄ 0 0
0 0 0 0 0

,

Γxyz =


1 0 0 0 0
0 ρ̄ 0 0 0
0 0 ρ̄ 0 0
0 0 0 ρ̄ 0

1−γ
γ T̄ 0 0 0 ρ̄

γ

, Axyz =


a11 a12 0 0 0
a21 a22 a23 a24 a25
0 a32 a33 0 a35
0 a42 0 a44 a45

a51 a52 a53 a54 a55

,

where

a11= ū, a12= ρ̄, a21=
1

γMa2 T̄,
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a22= ρ̄ū, a23=−
1

Re
∂µ̄

∂y
, a24=−

1
Re

∂µ̄

∂y
,

a25=
1

γMa2 ρ̄+
1

Re
τ
(2

3
∂v̄
∂y

+
2
3

∂w̄
∂z

)
, a32=

2
3

1
Re

∂µ̄

∂y
, a33= ρ̄ū,

a35=−
1

Re
τ

∂µ̄

∂y
, a42=

2
3

1
Re

∂µ̄

∂z
, a44= ρ̄ū,

a45=−
1

Re
τ

∂µ̄

∂z
, a51=

1−γ

γ
ūT̄,

a52=
(γ−1)Ma2

Re

(
4
3

µ̄
∂v̄
∂y

+
4
3

µ̄
∂w̄
∂z

)
, a53=−

(γ−1)Ma2

Re

(
2µ̄

∂µ̄

∂y

)
,

a54=−
(γ−1)Ma2

Re

(
2µ̄

∂µ̄

∂z

)
, a55=

1
γ

ρ̄ū.

For

Bxyz =


b11 0 b13 0 0
0 b22 0 0 b25

b31 0 b33 b34 b34
0 0 b43 b44 b45

b51 b52 b53 b54 b55

,

where

b11= v̄, b13= ρ̄,

b22= ρ̄v̄− 1
Re

∂µ̄

∂y
, b25=−

1
Re

τ
∂ū
∂y

,

b31=
1

γMa2 T̄, b33= ρ̄v̄− 4
3

1
Re

∂µ̄

∂y
,

b34=−
1

Re
∂µ̄

∂z
, b35=

1
γMa2 ρ̄− 1

Re
τ
(4

3
∂v̄
∂y
− 2

3
∂w̄
∂z

)
,

b43=
2
3

1
Re

∂µ̄

∂z
, b44= ρ̄v̄− 1

Re
∂µ̄

∂y
,

b45=−
1

Re
τ

(
∂w̄
∂y

+
∂v̄
∂z

)
, b51=

1−γ

γ
v̄T̄,

b52=−
(γ−1)Ma2

Re

(
2µ̄

∂ū
∂y

)
, b53=−

(γ−1)Ma2

Re

(
8
3

µ̄
∂v̄
∂y
− 4

3
µ̄

∂w̄
∂z

)
,

b54=−
(γ−1)Ma2

Re

[
2µ̄

(
∂w̄
∂y

+
∂v̄
∂z

)]
, b55=

1
γ

ρ̄v̄− 1
RePr

(
∂µ̄

∂y
+τ

∂T̄
∂y

)
.
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For

Cxyz =


c11 0 0 c14 0
0 c22 0 0 c25
0 0 c33 c34 c35

c41 0 c43 c44 c45
c51 c52 c53 c54 c55

,

where

c11= w̄, c14= ρ̄, c22= ρ̄w̄− 1
Re

∂µ̄

∂z
,

c25=−
1

Re
τ

∂ū
∂z

, c33= ρ̄w̄− 1
Re

∂µ̄

∂z
, c34=

2
3

1
Re

∂µ̄

∂y
,

c35=−
1

Re
τ

(
∂w̄
∂y

+
∂v̄
∂z

)
, c41=

1
γMa2 T̄, c43=−

1
Re

∂µ̄

∂y
,

c44= ρ̄w̄− 4
3

1
Re

∂µ̄

∂z
, c45=

1
γMa2 ρ̄− 1

Re
τ
(
− 2

3
∂v̄
∂y

+
4
3

∂w̄
∂z

)
, c51=

1−γ

γ
w̄T̄,

c52=−
(γ−1)Ma2

Re

(
2µ̄

∂ū
∂z

)
, c53=−

(γ−1)Ma2

Re

[
2µ̄

(
∂w̄
∂y

+
∂v̄
∂z

)]
,

c54=−
(γ−1)Ma2

Re

(
8
3

µ̄
∂w̄
∂z
− 4

3
µ̄

∂v̄
∂y

)
, c55=

1
γ

ρ̄w̄− 1
RePr

(
∂µ̄

∂z
+τ

∂T̄
∂z

)
.

For

Dxyz =


d11 0 d13 d14 0
d21 0 d23 d24 d25
d31 0 d33 d34 d35
d41 0 d43 d44 d45
d51 0 d53 d54 d55

,

where

d11=
∂v̄
∂y

+
∂w̄
∂z

, d13=
∂ρ̄

∂y
, d14=

∂ρ̄

∂z
, d21= v̄

∂ū
∂y

+w̄
∂ū
∂z

, d23= ρ̄
∂ū
∂y

,

d24= ρ̄
∂ū
∂z

, d25=−
1

Re
∂τ

∂y
∂ū
∂y
− 1

Re
∂τ

∂z
∂ū
∂z
− 1

Re
τ

(
∂2ū
∂y2 +

∂2ū
∂z2

)
,

d31= v̄
∂v̄
∂y

+w̄
∂v̄
∂z

+
1

γMa2
∂T̄
∂y

, d33= ρ̄
∂v̄
∂y

, d34= ρ̄
∂v̄
∂z

,

d35=
1

γMa2
∂ρ̄

∂y
− 1

Re
∂τ

∂y

(
4
3

∂v̄
∂y
− 2

3
∂w̄
∂z

)
− 1

Re
∂τ

∂z

(
∂v̄
∂z

+
∂w̄
∂y

)
− 1

Re
τ

(
4
3

∂2v̄
∂y2 +

∂2v̄
∂z2 +

1
3

∂2w̄
∂y∂z

)
,

d41= v̄
∂w̄
∂y

+w̄
∂w̄
∂z

+
1

γMa2
∂T̄
∂z

, d43= ρ̄
∂w̄
∂y

, d44= ρ̄
∂w̄
∂z

,
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d45=
1

γMa2
∂ρ̄

∂z
− 1

Re
∂τ

∂y

(
∂v̄
∂z

+
∂w̄
∂y

)
− 1

Re
∂τ

∂z

(
−2

3
∂v̄
∂y

+
4
3

∂w̄
∂z

)
− 1

Re
τ

(
∂2w̄
∂y2 +

4
3

∂2w̄
∂z2 +

1
3

∂2v̄
∂y∂z

)
,

d51=
1
γ

(
v̄

∂T̄
∂y

+w̄
∂T̄
∂z

)
, d53=

1
γ

ρ̄
∂T̄
∂y

+
1−γ

γ
T̄

∂ρ̄

∂y
, d54=

1
γ

ρ̄
∂T̄
∂z

+
1−γ

γ
T̄

∂ρ̄

∂z
,

d55=
1−γ

γ

(
v̄

∂ρ̄

∂y
+w̄

∂ρ̄

∂z

)
− 1

RePr

(
∂τ

∂y
∂T̄
∂y

+
∂τ

∂z
∂T̄
∂z

+τ
∂2T̄
∂y2 +τ

∂2T̄
∂z2

)
− (γ−1)Ma2

Re

[
4
3

τ

(
∂v̄
∂y

)2
+

4
3

τ

(
∂w̄
∂z

)2
− 4

3
τ

∂v̄
∂y

∂w̄
∂z

+τ

(
∂ū
∂y

)2
+τ

(
∂ū
∂z

)2
+τ

(
∂v̄
∂z

)2
+τ

(
∂w̄
∂y

)2
+2τ

∂v̄
∂z

∂w̄
∂y

]
.

The variable τ represents the linear coefficient of perturbation viscosity to perturbation
temperature, i.e., µ′=τT′, and it depends on the basic flow temperature T̄.

Appendix B: The coefficient matrices in Eq. (2.6)

The coefficient matrices in Eq. (2.6) are provided as below

Aξηζ =A+ J
[

∂

∂η

(
ηY

J

)
+

∂

∂ζ

(
ζY

J

)]
VXY+ J

[
∂

∂η

(
ηZ

J

)
+

∂

∂ζ

(
ζZ

J

)]
VXZ,

Bξηζ =ηYB+ηZC+ J
[

∂

∂η

(
η2

Y
J

)
+

∂

∂ζ

(
ηYζY

J

)]
Vyy+ J

[
∂

∂η

(
η2

Z
J

)
+

∂

∂ζ

(
ηZζZ

J

)]
VZZ

+ J
[

∂

∂η

(
ηYηZ

J

)
+

∂

∂ζ

(
ηYζZ

J

)]
VYZ,

Cξηζ = ζYB+ζZC+ J
[

∂

∂η

(
ηYζY

J

)
+

∂

∂ζ

(
ζ2

Y
J

)]
VYY+ J

[
∂

∂η

(
ηZζZ

J

)
+

∂

∂ζ

(
ζ2

Z
J

)]
VZZ

+ J
[

∂

∂η

(
ζYηZ

J

)
+

∂

∂ζ

(
ζYζZ

J

)]
VYZ,

Vξξ =VXX, Vηη =η2
YVYY+η2

z Vzz+ηYηZVYZ, Vζζ = ζ2
YVYY+ζ2

ZVZZ+ζYζZVYZ,
Vξη =ηYVXY+ηZVXZ, Vξζ = ζYVXY+ζZVXZ,

Vηζ=2ηYζYVYY+2ηZζZVZZ+(ηYζZ+ηZζY)VYZ.

The variable J is the Jacobian determinant, which can be expressed as

J=1

/∣∣∣∣Yη Yζ

Zη Zζ

∣∣∣∣=1
/[

YηZζ−Yζ Zη

]
.
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