
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. xx, No. x, pp. 1-27

DOI: 10.4208/aamm.OA-2022-0278
xxx 2024

Cell-Average Based Neural Network Method for
Hunter-Saxton Equations

Chunjie Zhang1, Changxin Qiu1,∗, Xiaofang Zhou1

and Xiaoming He2

1 School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang 315211,
China
2 Department of Mathematics and Statistics, Missouri University of Science and
Technology, Rolla, MO 65409, USA

Received 1 November 2022; Accepted (in revised version) 3 July 2023

Abstract. In this paper, we develop a cell-average based neural network (CANN)
method for solving the Hunter-Saxton equation with its zero-viscosity and zero-
dispersion limits. Motivated from the finite volume schemes, the cell-average based
neural network method is constructed based on the finite volume integrals of the orig-
inal PDEs. Supervised training is designed to learn the solution average difference
between two neighboring time steps. The training data set is generated by the cell av-
erage based on a single initial value of the given PDE. The training process employs
multiple time levels of cell averages to maintain stability and control temporal accu-
mulation errors. After being well trained based on appropriate meshes, this method
can be utilized like a regular explicit finite volume method to evolve the solution under
large time steps. Furthermore, it can be applied to solve different type of initial value
problems without retraining the neural network. In order to validate the capability
and robustness of the CANN method, we also utilize it to deal with the corrupted
learning data which is generated from the Gaussian white noise. Several numerical
examples of different types of Hunter-Saxton equations are presented to demonstrate
the effectiveness, accuracy, capability, and robustness of the proposed method.

AMS subject classifications: 35E15, 65M15, 68T07
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1 Introduction

The Hunter-Saxton (HS) equation [1,2] is a nonlinear wave equation which has been used
to describe waves in a massive director field that propagate in nematic liquid crystals

∗Corresponding author.
Emails: 2111071049@nbu.edu.cn (C. Zhang), qiuchangxin@nbu.edu.cn (C. Qiu), 2111071051@nbu.edu.cn
(X. Zhou), hex@mst.edu (X. He)

http://www.global-sci.org/aamm 1 c©2024 Global Science Press



2 C. Zhang, C. Qiu, X. Zhou and X. He / Adv. Appl. Math. Mech., xx (2024), pp. 1-27

when certain molecules move and cause interference. The HS equation under considera-
tion here is given as

uxxt+2uxuxx+uuxxx =0. (1.1)

If we consider the viscosity and dispersion [3, 4], we have the corresponding regulariza-
tion with viscosity:

uxxt+2uxuxx+uuxxx−ε1uxxxx =0, (1.2)

and the corresponding regularization with dispersion:

uxxt+2uxuxx+uuxxx−ε2uxxxxx =0, (1.3)

where ε1 ≥ 0 and ε2 are small constants. In the past two decades, this equation has
attracted extensive attention because of its rich mathematical structure and properties.
Therefore it is not surprising that many different numerical methods have been proposed
and analyzed for the HS equation, including the finite difference method [5], local dis-
continuous Galerkin (LDG) method [6, 7], collocation method [8–10], collocation finite
element method [11], quasilinearization method [12, 13] and others [14–16]. However,
compared with the extensively studied classical numerical methods, the HS equation is
still in great need of efforts for developing and analyzing the stable, accurate, and effi-
cient numerical neural network methods, especially for peakon solutions.

Recently, there has been increasing interest in developing neural networks to solve
partial differential equations (see, e.g., [17–30]). Neural networks generate a wide range
of functions by combining linear transformations and activation functions. One of the
most notable characteristics of neural networks is that they do not require a hand-crafted
geometric mesh or point cloud, as do the traditional, well-studied finite difference, finite
volume, and finite element methods. According to their basic technique and core goal,
the neural network methods for solving PDEs can be roughly divided into two categories.

One group is to design neural network methods and apply the neural network meth-
ods to solve many types of partial differential equations. These neural network methods
take x and t as the network input vectors, and have the advantages of automatic differen-
tiation and mesh free, including the early work [31], the popular physics-informed neural
network (PINN) methods [26,32–34], and many others [22,35–38]. Moreover, PIELM [39]
is proposed to improve the speed of PINN in a larger domain for practical problems.
In [40], PINNs are used to directly encode the control equations into the deep neural
network through automatic differentiation to overcome the limitations of incompressible
laminar flow and turbulence. In [41–43], weak formulations are applied in the loss func-
tion, instead of the PDEs explicitly enforced on collocation points. We further mention
the works of [44] and [45], for which method of lines are explored with Fourier basis and
Residual networks applied to evolve the dynamical system.

The second group is to apply neural network to improve the existing numerical meth-
ods. In [46], a multilayer perceptron (MLP) is constructed to identify troubled-cells.
In [47], the authors use (deep) Reinforcement learning to learn the new solvers for con-
servation laws. In [48], an MLP network is designed to estimate the artificial viscosity in
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the discontinuous Galerkin schemes. Researchers also developed WENO schemes aug-
mented with convolution networks for shock detection in [49] and DG methods with
convolution network for strong shock detection in [50]. Recently, the work [51] also de-
veloped an estimator based on TVB constants for DG methods by constructing a MLP
model. Considering the vigorous development of neural network methods for PDEs, the
Hunter-Saxton equation still needs significant efforts to develop and analyze the stable,
accurate, and efficient numerical neural network methods.

In this paper, we propose a cell-average based neural network (CANN) method [52,
53], which is motivated from finite volume method, to solve the Hunter-Saxton equation.
The CANN method follows the solution properties and characteristics of the PDEs to
build up neural network solvers. The main idea is to handle all spatial variable related
differentiation and integration approximation by the neural network. In adjacent time
levels, the features of the current time level can be accurately captured by the CANN
method based on the solution of the previous time level. In a word, through intensive
training we force the neural network to learn the solution average evolution between
two neighboring time steps. An interesting aspect of CANN method is the fact that it
is mesh dependent and a local solver due to its base on the finite volume scheme. With
the CANN method no effort is required for the differentiation terms related to the spatial
variable x and we have no concerns about the choice of numerical flux scheme.

Once being well trained, the CANN method can be implemented like an explicit finite
volume scheme and possess several advantages and nice properties. First, the CANN
method can be relieved from the explicit scheme CFL restriction, and can adapt large time
step size to evolve the solutions of the HS equation. Second, once being well trained for
one initial condition, the CANN method can work well for a group of initial conditions
for HS equation without retraining the neural network. Third, the CANN method works
well for the corrupted data or low quality data generated by white noise for applications
in real world. The predictions of the CANN model are fairly robust against data noise.

The rest of this article is organized as follows. In Section 2, we introduce motivation
of CANN method and emphasize the learning data setup and the training process. Then,
we provide numerical experiments to validate the proposed method and illustrate fea-
tures and capability of the method in Section 3. Finally, we will summarize the conclusion
in Section 4.

2 Cell-average based neural network (CANN) method

2.1 Problem setup, motivation and cell-averaged neural network method

We consider using the cell-averaged neural network (CANN) method to solve partial
differential equations (PDEs):

ut =L(u), (x,t)∈ [a,b]×<+. (2.1)
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Here t and x denote the temporal and spatial variables and [a,b] is the spatial domain.
The differential operator L represents the commonly used second order, third and fourth
order differential operators, such as L(u)=uxxx or L(u)=−uxxxx for the high order PDEs.
For the Hunter-Saxton equation, by denoting q=uxx, we have qt =L(u), (x,t)∈Ω×(0,T],

L(u)= 1
2
((ux)2)x−

1
2
(u2)xxx+ε1uxxxx+ε2uxxxxx.

(2.2)

When ε1=ε2=0, (2.2) is the HS equation (1.1). When ε1>0, ε2=0, (2.2) is the regularization
with viscosity of the HS equation (1.2). When ε1=0, ε2 6=0, (2.2) is the regularization with
dispersion of the HS equation (1.3).

The cell-average based neural network method is grid dependent and driven by the
finite volume method. Traditional numerical methods will be served as the guideline to
construct the deep learning method. Divide [a,b] evenly into J cells, and ∆x= b−a

J is the

cell size, where x1/2 = a, xJ+1/2 = b. Then [a,b] =
⋃J

j=1 Ij with Ij = [xj−1/2,xj+1/2] as one
computational cell. In addition, the time domain is evenly divided so that tn = n×∆t
and t0 = 0. After enough training, the method can be used for the purpose of a regular
meticulous volume scheme for solving PDEs (2.1).

In the traditional finite volume method, the partial differential equation (2.1) is inte-
grated over the unit Ij in space and the sub interval [tn,tn+1] in time. Then we have∫ tn+1

tn

∫
Ij

utdxdt=
∫ tn+1

tn

∫
Ij

L(u)dxdt. (2.3)

According to the definition of cell average ūj(t)= 1
∆x

∫
Ij

u(x,t)dx, (2.3) leads to

ūj(tn+1)−ūj(tn)=
1

∆x

∫ tn+1

tn

∫
Ij

L(u)dxdt. (2.4)

The equation above is the integral format as our starting point to design our neural net-
work method. The idea of cell-average based neural network method is to apply a neural
network solver N (·;Θ) to approximate the right hand side of (2.4):

N (·;Θ)≈ 1
∆x

∫ tn+1

tn

∫
Ij

L(u)dxdt, (2.5)

where Θ denotes the network parameter set of all weight matrices and biases. Then we
have the neural network format for solving the PDEs at next time level tn+1:

v̄out
j = v̄in

j +N (
−→
V in

j ;Θ). (2.6)

Comparing (2.6) and (2.4) and denoting v̄in
j = ūj(tn) and v̄out

j ≈ ūn+1
j , the format of the

CANN method to approximate the solution average ūn+1
j at next time level tn+1 can be

obtained:
ūn+1

j = ūn
j +N (

−→
V in

j ;Θ). (2.7)
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Figure 1: Illustration of cell-average based neural network method: left is one time level solution averages m=0
for training [52] and right is multiple time levels (m>0) of solution averages for training.

Here
−→
V in

j is the training data set corresponding to given the solution averages {ūn
j } at

time level tn. It is an important component that needs to be carefully selected, as shown
in Fig. 1. Its general format is defined as follows:

−→
V in

j =
[
ūn

j−p,··· ,ūn
j−1,ūn

j ,ūn
j+1,··· ,ūn

j+q

]T
, (2.8)

where we include p cell averages to the left of ūn
j and q cell averages to the right of ūn

j
in the definition of the input vector. For example, for some linear PDEs, we can use
the simple architecture with p = 1 and q = 0, see the left figure of Fig. 1. However, for
nonlinear PDEs, we always need to choose more complicated architecture with p≥1 and
q≥1. Note that for j=1 or j= J or those close to boundary cells, in this paper we apply
the exact solution averages for ghost cells outside the domain to implement boundary
conditions. The suitable stencil or the p and q values in (2.8) determine the effectiveness
of the neural network method approximating the solution average ūn+1

j at the next time
level.

In this paper, we consider a standard fully connected neural network with M (M≥3)
layers. The first layer is the input vector, the last layer is the output vector, and there
are (M−2) hidden layers in the middle. Therefore, the minimum structure of neural
network has 3 layers, i.e., M=3. The number of neurons in each layer is expressed by ni
(i=1,.. .,M). The first layer takes n1 = p+q+1 as the dimension, and the last layer takes
nM =1 as the dimension. The abstract goal of machine learning is to find a function N :
Rp+q+1→R1, so that N (·;Θ) accurately approximates 1

∆x

∫ tn+1
tn

∫
Ij
L(u)dxdt. The optimal

parameter set of network N (·;Θ) is obtained by the training on the given data set Θ.
Our major contribution is to explore such a network structure that exactly matches

an explicit one-step finite volume scheme. Thus the network parameter set, after offline
supervised learning from a given data set, behaves as the coefficients of the scheme. After
being well trained, the CANN method is a local and mesh dependent solver that can be
applied to solve the equation like a regular explicit method. Then, we have the following
definition.
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Definition 2.1 ( [52]). A cell-average based neural network method is uniquely determined by
the following four components: (1) the choice of spatial mesh size ∆x; (2) the choice of time step
size ∆t; (3) the choice of network learning data including the input vector

−→
V in

j of (2.8) and the
target data set; and (4) the number of hidden layers and neurons per layer in the corresponding
structure of the neural network. With the optimal weights and biases Θ∗, the cell-average based
neural network method can be implemented as a regular explicit finite volume scheme

v̄n+1
j = v̄n

j +N (
−→
V n

j ;Θ∗), ∀j=1,··· , J, ∀n=0,1,2,··· . (2.9)

2.2 Training process

In this section, we discuss how to train the network to obtain the optimal parameter
set Θ∗ so that the neural network (2.6) can accurately approximate the mean evolution
of solutions ūn

j → ūn+1
j . Considering Definition 2.1, the learning data set plays a key

role in the whole training process. Training data sets are usually generated from initial
conditions or given data at tn while target data sets usually come from time level solution
averages corresponding to t≥ tn. Even though we select one trajectory as the target data,
the well trained CANN can still be applied to other different trajectories corresponding
to different initial conditions.

The learning data is collected in pairs, with each pair representing the average of the
solutions at two adjacent time levels. The notation of the training data set is

S=
{(

ūn
j
)
, ūn+1

j , j=1,.. ., J
}m

n=0
, (2.10)

where the training data (ūn
j ) is generated from solution averages of given data (or initial

conditions with n=0). The target data ūn+1
j is solution average obtained from observed

data collection of real application problems or other numerical methods for the PDEs. We
emphasize that the training data pair is the mean of the solutions collected in the spatial
domain and from the time level t0 to tm+1.

In order to simplify the discussion of the method, this paper focuses on the corre-
sponding approximation for each fitting problem on a network based on cell average.
When the fitting problem (2.1) is given different initial value ui(x,0) = ui

0(x) (i means
the different initial conditions and boundary conditions), learning data sets will be col-
lected from one trajectory of different initial values and boundary conditions to train the
network. After enough training, it will be implemented like an explicit one-step finite
volume format for solving other different initial values, without retraining the network.
It should be pointed out that ui(x,0) = ui

0(x) denotes different initial conditions under
similar types. For example, if the trajectory data of u1(x,0) = u1

0(x) is collected to train
the network, then the well trained CANN can still be used to solve different initial value
problems with trajectory ui(x,0)=ui

0(x), (i=2,3,···).
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In addition, in order to test the robustness of CANN, we use low-quality data as
learning data to train neural networks. Now let’s call the noisy learning data set

SN =
{(

ūn
j +ωj

)
, ūn+1

j +ξ j, j=1,.. ., J
}m

n=0
, (2.11)

where ωj and ξ j are Gaussian white noises obtained from standard normal distribution.
The network output value v̄out

j is obtained by applying v̄in
j = ūn

j in (2.6) and compared

with the target value ūn+1
j . And then it loops between the data set S of (2.10) (or SN of

(2.11)) to minimize the error or square loss function

Lj,tn(Θ)=(v̄out
j −ūn+1

j )2, (2.12)

for all j=1,.. ., J and for all n=0,··· ,m. This loss function defined on a single data pair is
called stochastic or approximate gradient descent.

Specifically for the last time level pair (tm,tm+1), we record the squared L2 error de-
fined below corresponding to iteration

L2
2(tm+1)=

J

∑
j=1

∆xLj,tm(Θ)=
J

∑
j=1

(v̄out
j −ūm+1

j )2∆x. (2.13)

We output the squared L2 error of (2.13) corresponding to iteration index i = 1,··· ,K to
demonstrate the effectiveness of cell-average based neural network method.

Next we conclude the section with comments on the minimum size of training data
set S or SN , which are purely lab results observed from numerical tests.

Remark 2.1. For linear partial differential equations, one time level solution averages in
the learning data set S or SN , which corresponds to (t0,t1) or m=0 in (2.10), are sufficient
for obtaining an effective neural network, see Fig. 1. For nonlinear partial differential
equations, it is necessary to include multiple time levels (m > 0) of solution averages
in the training set S to make sure the neural network learns the evolution mechanism
successfully, see Fig. 1.

Remark 2.2. Once one cell-average based neural network is well trained and available, it
can be applied to solve the Hunter-Saxton equation associated with different initials and
over different domains.

2.3 Implementation and summary of cell-average based neural network
method

In this section, we discuss the detail of our CANN learning algorithm. The general pro-
cedures including the data collection are generated in Algorithm 2.1.

Using the spatial step size ∆x, the temporal step size ∆t, the previously selected net-
work input vector

−→
V n

j =
[
v̄n

j−p,··· ,v̄n
j−1,v̄n

j ,v̄n
j+1,··· ,v̄n

j+q

]T
,
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Algorithm 2.1 Training process of CANN.
Require: Collect data set S: (SN can be collected similarly)

1: training data set: ūm
j from given data corresponding to t0,t1,. . .,tm,

2: target data set: ūm+1
j from given data or exact values at tm+1.

Ensure: CANN: v̄out
j = v̄in

j +N (
−→
V in

j ;Θ)

3: v̄in
j ← ūn

j

4:
−→
V in

j ←
[
ūn

j−p,··· ,ūn
j−1,ūn

j ,ūn
j+1,··· ,ūn

j+q

]T

5: Θ← initial random values
6: while loss function values ≤ tolerance do
7: v̄out

j ← v̄in
j +N (

−→
V in

j ;Θ)

8: Lj,tn(Θ)← (v̄out
j −ūn+1

j )2

9: update Θ∗←Stochastic Gradient Descent
10: end while
11: Output: v̄n+1

j = v̄n
j +N (

−→
V n

j ;Θ∗), j=1,2,3,.. .

12: return ūn+1
j ← v̄out

j

Ensure: Apply v̄n+1
j = v̄n

j +N (
−→
V n

j ;Θ∗) to solve different initial value problems with
us(x,0).

and the obtained optimal weight and deviation Θ∗, we have a complete definition of
the neural network method. Then it is implemented as a regular explicit finite volume
scheme as below

v̄n+1
j = v̄n

j +N (
−→
V n

j ;Θ∗), ∀j=1,··· , J, ∀n=0,1,2,··· . (2.14)

We now discuss about the advantages of the proposed CANN method.
First, a surprising result is that cell-average based neural network approach can get

relief of the CFL constraint on the time step. Classical numerical methods require time
steps as small as ∆t≈ (∆x)2. The results show that the CANN method can be adapted
to a stable method by using large time step (e.g., ∆t= 2∆x) for various ∆x. Once being
trained well, the CANN method can be used as an explicit method to advance resolution
efficiently and accurately.

Second, for cell-average based neural network method, we use the known data for
the data in the ghost cell such that we can apply it for different initial conditions and
boundary conditions easily, without retraining the neural network. A roughly generic
template allows evolution from one current unit to the next, with a previously known
unit solving the next unknown unit.

Third, to understand the power and robustness of the CANN method, we apply it to
noise learning that deals with low-quality learning data or Gaussian noise from related
application problems. Numerical experiments show that the CANN method is fairly
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robust against data noise. The CANN method works well for the corrupted data and can
capture the main structure of the wave propagation well in the approximation without
retraining the neural network, even for relatively large level corrupted data with a normal
distribution of 0.05×N(0,1).

Remark 2.3. How to properly select the number of hidden layers and the number of
neurons in each layer has not been discovered yet. In this paper, after a lot of practice, we
found that a small number of hidden layers (less than 5 hidden layers) is conducive for
the implementation, and the numerical results are very good. Thus, this CANN is also a
kind of light neural network.

3 Numerical examples

In this section, we will show the numerical experiments for different types of Hunter-
Saxton equations. Our primary focus is to demonstrate the accuracy of cell-average based
neural network methods for numerical approximations. Then, considering the general-
ization ability of neural network, we carry out the well trained CANN solver to deal with
different initial conditions directly without retraining the neural network. We also con-
duct corrupted data or low quality data which are generated from the noise to validate
the capability of the CANN method.

In this section, we denote T as the final time where we compute the L2 and L∞ errors.
As mentioned previously, the time step size ∆t is chosen as one part of the definition of
a neural network method (2.14). Thus we always have T = Nt∆t, where Nt is the total
numbers of time step. Below we list the L2 and L∞ errors formula, which are the same as
the ones for finite volume method.

ErrorL2(T)=

√√√√ J

∑
j=1

(v̄out
j (T)−ūj(T))2∆x, (3.1a)

ErrorL∞(T)=
J

max
j=1
|v̄out

j (T)−ūj(T)|, (3.1b)

where v̄out
j (T) denote the solution of the cell-average based neural network method (2.14)

on cell j and at final time T. We have ūj(T) denote either the exact solution average or
the reference solution average on cell j and at time T. In the numerical tests, it can be
approximately obtained from a highly accurate numerical method.

As marked down in Definition 2.1, four components of ∆x, ∆t, network input vector
−→
V in

j and the structure of neural network (number of hidden layers and neurons per layer)
together identify one neural network solver (2.14). We highlight that for HS equations, all
numerical examples in this section apply multiple time level data pairs spread over the
spatial domain for training, with J in (2.10) as the total number of partition over spatial
domain, see Remark 2.1. We also mention that the square of L2 error is used as training
stopping condition, with which well trained network errors are around 10−6 or smaller.
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Figure 2: Noisy learning data with ±2% (left) and ±5% (right).

The noisy learning data set is denoted as (2.11) and ωj and ξ j are Gaussian white noise
which are drawn from a standard normal distribution. Over the section we consider two
cases with η=0.02 and η=0.05 (e.g., Fig. 2), which respectively correspond to ±2% and
±5% relative noises in all data.

3.1 Example 1

In this section, we consider the numerical simulation for the HS equation

uxxt+2uxuxx+uuxxx =0 (3.2)

with the initial condition

u(x,0)=0.01(x−π)2(x+π)2sin(x). (3.3)

The exact solution of the HS equation (3.2) is

u(x,t)=0.01(x−π)2(x+π)2sin(x−ct). (3.4)

The computational domain is D=[−π,π]. Because different c will yield different initial
values or exact solutions, we set the case of c=1 as the foundational test. The other cases
will be considered in later tests for different initial conditions.
Accuracy tests with c=1. In this experiment, we test the accuracy of our CANN method.
In the training process, the learning data set (2.10) is generated from the solution trajec-
tory of (3.4) with c=1. By setting ∆x=0.0785 and ∆t= 1

2 ∆x, we pick the neural network
which has 1 hidden layer with 8 neurons for the training. The essential input vector for
CANN method can be generated by

−→
V in

j =
[
ūn

j−7,ūn
j−6,ūn

j−5,ūn
j−4,ūn

j−3,ūn
j−2,ūn

j−1,ūn
j ,ūn

j+1,ūn
j+2,ūn

j+3

]T
. (3.5)
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Figure 3: Trajectory simulation with c=1 and ∆t= 1
2 ∆x.

Network training is conducted for up to k = 104 iterations. After enough training, the
neural network is applied to solve the HS equation as a fixed numerical scheme up to
T=0.5. Screen shots of t=0, t=0.25, and t=0.5 are shown in Fig. 3. We can found that
the wave profile can be well approximated and the large time step size works well for the
CANN method.

Additionally, we also test the accuracy of large time step size for our CANN method
with the fixed spatial mesh size ∆x = 0.0785 and different temporal mesh size ∆t =
1
3 ∆x, 1

2 ∆x,∆x, 8
5 ∆x correspondingly. L2 and L∞ errors are computed and listed in Table

1. We can find that even for large time step size, our method can obtain the similar errors
around 10−3 for L2 and 10−1 for L∞ in the simulation. We further report that our CANN
method can explicitly solve the HS equation with 8

5 ∆x, which is bigger than the time step
size of ∆t≤∆x2 from the conventional CFL restriction.

Different trajectories approximation. Next, we apply CANN method to solve Eq. (3.2)
under different initial conditions. Different initial conditions are obtained by applying
different c in the exact solution (3.4). There is no need to retrain the CANN solver such
that we can use it to solve the HS equation with different initial conditions directly.

In this paper, we choose the well trained neural network, which is obtained from
the trajectory with c= 1, to solve the different initial conditions with c= 0.1 and c= 1.5.
As a fixed numerical scheme, the CANN solver does not need to change the architecture.
However, in order to match the different initial conditions with parameter c, we still need
to change the size of the time step ∆t= 16

5 ∆x for c= 0.1 and ∆t= 1
3 ∆x for c= 1.5 in the

simulation process. From Fig. 4 and Fig. 5, we can clearly see that the CANN method

Table 1: Errors of neural network methods for Example 3.4 for ∆x=0.0785 fixed with varying ∆t.

∆t L2 L∞
1/3∆x 5.7000e-03 1.110e-01
1/2∆x 5.6000e-03 1.104e-01

∆x 5.7000e-03 1.1160e-01
8/5∆x 5.7000e-03 1.1130e-01
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Figure 4: Apply optimal CANN to solve different initials with c=0.1 and ∆t= 16
5 ∆x.
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Figure 5: Apply optimal CANN to solve different initials with c=1.5 and ∆t= 1
3 ∆x.
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Figure 6: Apply optimal CANN to approximate different solution trajectory with u(x,t)=0.01(x−π)2cos(x− 1
2 t).

is able to accurately capture a decent collection of waves propagation for HS equation.
We also highlight that the smaller the parameter c is, the better approximation of the
propagation of motion wave can be obtained by CANN solver without retraining.

Furthermore, we also test the cases whose solution trajectories are different. We uti-
lize the well trained neural network, which is obtained from the trajectory with c= 1 in
Eq. (3.4), to approximate the different solution trajectories with

u(x,t)=0.01(x−π)2cos
(

x− 1
2

t
)

and u(x,t)= tan
(2

5
(x−ct)

)
.

In Fig. 6, we set ∆x=π/40, ∆t=2∆x and obtain the L2 error 1.70×10−3 and the L∞ error
2.07×10−2. In Fig. 7, we have the L2 error 1.90×10−3 and the L∞ error 5.62×10−2 by
using the same setting of ∆x and ∆t. This indicates that our CANN method has a good
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Figure 7: Apply optimal CANN to approximate different solution trajectory with u(x,t)= tan( 2
5 (x−t)).
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Figure 8: Trajectory simulation with corruption learning data by η=0.02 (top) and η=0.05 (bottom).

capability for generalization, allowing it to obtain a good numerical approximation of the
different solution trajectories for the HS equation without retraining the network.

Low quality data. In order to test the capability of our CANN solver, we also utilize it to
deal with the corrupted data generated from (2.11) with multiplicative factor η=0.02 and
η=0.05, which respectively correspond to ±2% and ±5% relative noises in all data. An
interesting fact of this part is that we still apply the CANN solver associated with c= 1
from the accuracy test part and do not need to change the architecture any more.

By applying the CANN solver in the approximation for η=0.02 and η=0.05, we have
the L2 and the L∞ errors around 7.3×10−3 and 1.375×10−1 with meshes of ∆x= 0.0785
and ∆t = 4

5 ∆x. Fig. 8 shows that the CANN method is fairly robust against data noise
and can well capture the main structure of the wave propagation in the approximation
without retraining the neural network.

In addition, we also try to simulate the solution with high frequency noise perturba-
tion of η=0.2 and η=0.5. From Fig. 9 we can observe that the main structure of the wave
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Figure 9: Trajectory simulation with corruption learning data by η=0.2 (top) and η=0.5 (bottom).

propagation captured by the CANN method is acceptable.

3.2 Example 2

In this example, we consider the regularization with viscosity of the HS equation

uxxt+2uxuxx+uuxxx−ε1uxxxx =0, (3.6)

where ε1≥ 0 is a constant. Here, we consider the zero-viscosity limit of (3.6) (i.e., zero-
viscosity limit ε1=0) with the initial data

u(x,0)=


0, x≤0,
x, 0< x<1,
1, x≥1.

(3.7)

The corresponding exact solution is

u(x,t)=


0, x≤0,

x
ct+1

, 0< x< (ct+1)2,

ct+1, x≥ (ct+1)2.

(3.8)

The computational domain is D=[−6,6]. In this example, we set the case of c=0.5 as the
foundational test. Others will be considered in later tests for different initial conditions.
Accuracy tests with c=0.5. In this part, we choose the size of ∆x=0.15 and ∆t= 5

24 ∆x in
the training process. Training data sets are generated from the solution trajectory of (3.8)
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Figure 10: Trajectory simulation with c=0.5 and ∆t= 5
24 ∆x.

associated with c=0.5. The neural network picked contains 1 hidden layer of 8 neurons.
The CANN solver applies input vector of

−→
V in

j =
[
ūn

j−6,ūn
j−5,ūn

j−4,ūn
j−3,ūn

j−2,ūn
j−1,ūn

j ,ūn
j+1,ūn

j+2,ūn
j+3

]T
. (3.9)

Network training is conducted for up to k=104 iterations. After well trained, we utilized
the neural network to solve the HS equation up to T=0.5. Screen shots of t=0, t=0.25,
and t=0.5 are shown in Fig. 10. We can see clearly that the moving profile can be obtained
accurately by the CANN method.

Table 2: Errors of neural network methods for Example 3.8 with c=0.5, ∆x=0.15 fixed with varying ∆t.

∆t L2 L∞
5/24∆x 2.6e-03 9.790e-02
1/3∆x 2.7e-03 1.016e-01
5/9∆x 2.6e-03 1.009e-01
5/3∆x 2.6e-03 1.088e-01

Furthermore, in order to test the accuracy with large time step, we consider the fixed
spatial mesh size ∆x = 0.15 and different temporal mesh size ∆t = 5

24 ∆x, 1
3 ∆x, 5

9 ∆x, 5
3 ∆x

correspondingly. The well trained CANN solver will be applied directly to solve the
wave propagation up to T=0.5. L2 and L∞ errors are computed in Table 2. We have seen
that even though the wave simulations have similar accuracy, our CANN method can
use the large time step size ∆t=5/3∆x (compared to the CFL restriction ∆t=∆x2) to be
implemented as a fast solver.
Different initial conditions. Next, in order to show the ability of generalization, we
apply the well trained CANN which is generated from the learning data set associated
with the trajectory c=0.5 to solve Eq. (3.8) under different initial conditions. In this paper,
the CANN solver can be implemented as a fixed numerical scheme without changing the
architecture. We just need to change the size of the time step with ∆t = 5

6 ∆x to match
the different parameter c = 0.1 in the simulation process by using the optimal CANN
method directly without retraining. Then the numerical approximations are obtained
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Figure 11: Apply optimal CANN to solve different initials with c=0.1 and ∆t= 5
6 ∆x.
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Figure 12: Apply optimal CANN to solve different initials with c=1 and ∆t= 5
42 ∆x.

accurately from CANN solver for different initial conditions of c=0.1 and c=1 without
retraining the network, see Fig. 11 and Fig. 12. The CANN method has strong capability
for generalization for different initial conditions in the wave propagation simulation.

Low quality data. In order to validate the robustness of our CANN method, we also
use it to deal with the noisy learning data in (2.11) perturbed by a multiplicative factor.
Without changing the architecture of the optimal neural network associated with c=0.5
in the accuracy tests, we apply it for the corrupted learning data with η=0.02 and η=0.05.

In the cases of low frequency η=0.02 and η=0.05, we have the L2 and the L∞ errors
around 10−3 and 10−1 by choosing the cell size ∆x=0.15 and ∆t= 10

9 ∆x. Screen shots of
t=0, t=0.25, and t=0.5 are shown in Fig. 13. It’s no surprise that the predictions for noisy
data by using the CANN model agree well with the exact solution in the approximation
without retraining the neural network.

Furthermore, we also test the cases of high frequency noise perturbation of η=0.2 and
η = 0.5. From Fig. 14, we can observe that the main structure of the wave propagation
captured by CANN method is good.

3.3 Example 3

In this section, we consider the regularization with dispersion of the HS equation

uxxt+2uxuxx+uuxxx−ε2uxxxxx =0, (3.10)
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Figure 13: Trajectory simulation with corruption learning data by η=0.02 (top) and η=0.05 (bottom).
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Figure 14: Trajectory simulation with corruption learning data by η=0.2 (top) and η=0.5 (bottom).

where ε2≥0 is a constant. In this example, we consider the zero-dispersion limit of (3.6)
(i.e., zero-dispersion limit ε2=0)with the initial data

u(x,0)=


2, x≤0.25,
3−4x, 0.25< x<0.75,
0, x≥0.75.

(3.11)
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Figure 15: Trajectory simulation with c=1 and ∆t= 1
20 ∆x.

The exact solution of the HS equation (3.10) is

u(x,t)=


−4(ct−0.5), x≤0.75−2(ct−0.5)2,
2(x−0.75)

ct−0.5
, 0.75−2(ct−0.5)2< x<0.75,

0, x≥0.75.

(3.12)

The computational domain is D=[−10,10].
Accuracy tests: c = 1. In this experiment, we choose ∆x = 0.125 and ∆t = 1

20 ∆x in the
training of CANN method. The learning data S can be generated from the single solution
trajectory of (3.11) and (3.12) with c= 1. The CANN solver contains 1 hidden layer of 8
neurons. And the essential input vector can be conducted by

−→
V in

j =
[
ūn

j−4,ūn
j−3,ūn

j−2,ūn
j−1,ūn

j ,ūn
j+1,ūn

j+2,ūn
j+3

]T
. (3.13)

After well trained, the neural network is applied for solving the HS equation (3.10) to
T = 0.2. Screen shots are shown in Fig. 15. We can see clearly that the moving shock
profile is simulated very well by the CANN method.

In order to test the accuracy that explicitly evolve the solution forward in time with
large time step size, we apply the CANN method to solve the HS equation with fixed
spatial mesh size ∆x= 0.125 and different temporal mesh size ∆t= 1

20 ∆x, 1
10 ∆x, 1

5 ∆x, 4
5 ∆x

correspondingly. L2 and L∞ errors are computed in Table 3. We can see clearly that our
CANN method can solve the HS equation with larger time step size 4

5 ∆x which is bigger
than the conventional method CFL restriction. In a word, the well trained CANN solver
can be implemented as a explicit numerical scheme and relieved from CFL restriction on
time step size.
Different initial conditions. Next, in order to test the generalization ability of our CANN
method, we apply it to solve HS equation (3.10) under different initial conditions which
are generated by applying different parameter c in the exact solution (3.12). Here, the
well trained CANN from the accuracy test part with c=1 will be applied directly without
retraining the neural network.
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Figure 16: Apply optimal CANN to solve different initials with c=0.1 and ∆t= 4
5 ∆x.
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Figure 17: Apply optimal CANN to solve different initials with c=1.2 and ∆t= 2
25 ∆x.

In this paper, we test the different initial conditions with c = 0.1 and c = 1.2 as the
examples. However, we still need to change the time step size to match the different
parameter c in the process of generating the well trained CANN solver for different initial
conditions. Here, we have ∆t= 4

5 ∆x for c=0.1 and ∆t= 2
25 ∆x for c=1.2.

From Fig. 16 and Fig. 17, we can clearly see that our CANN solver can obtain the
good simulation for different initial conditions without retraining the neural network.
Also, one interesting finding is that the smaller c is, the better simulation of the motion
wave can be obtained.

Low quality data. Furthermore, we also carry out the CANN solver to deal with the
corrupted learning data associated with Eq. (3.10). Here, we consider the learning data
SN with low frequency η=0.02 and η=0.05. The well trained CANN solver is from the
accuracy test part and doesn’t change the architecture any more, especially for the hidden
layers and neurons.

Table 3: Errors of CANN method for Example 3.10 with varying ∆t.

∆t L2 L∞
1/20∆x 2.1000e-03 2.109e-01
1/10∆x 2.3000e-03 2.227e-01
1/5∆x 2.6000e-03 2.3010e-01
4/5∆x 4.5000e-03 2.6980e-01
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Figure 18: Trajectory simulation with corruption learning data by η=0.02 (top) and η=0.05 (bottom).
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Figure 19: Trajectory simulation with corruption learning data by η=0.2 (top) and η=0.5 (bottom).

In this experiment, we denote meshes by ∆x = 0.125 and ∆t = 2
5 ∆x. Fig. 18 show

that for the corrupted learning data, our CANN method can still accurately and sharply
capture the wave evolution that is comparable to exact solution. Furthermore, for the
high frequency η = 0.2 and η = 0.5, we also have the good performance in Fig. 19. In
a word, the predictions of the CANN method are robust for data turbulence and can
accurately predict the main structure of wave propagation without retraining the neural
network.
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3.4 Example 4

In this section, we consider the HS equation in [14]

ut+2uxux−uxxt+uux =2uxuxx+uuxxx. (3.14)

The initial condition is
u(x,0)= ex. (3.15)

The exact solution of the HS equation (3.14) is

u(x,t)= ex−ct, (3.16)

where different c will yield different initial values or exact solutions. The computational
domain is D=[−4,1].

Accuracy tests: c= 3. In this experiment, we carry out the learning data set associated
with trajectory solution of c=3 in (3.16) to test the accuracy of CANN method. By setting
∆x= 0.05 and ∆t= 5

4 ∆x, we choose the same neural network input vector of (3.9) as for
HS equation (3.16). With the architecture of 1 hidden layer and 8 neurons, we train the
CANN solver up to k=104 iterations. After well trained, the CANN solver can be applied
for solving the HS equation to finial time T=0.5. Screen shots are shown in Fig. 20. We
can find that the numerical approximation of CANN method are comparable to those
exact solutions and no large oscillation is generated with the neural network method.

Additionally, in order to validate the accuracy of large time step for our CANN
method, we consider the fixed spatial mesh size ∆x= 0.05 and different temporal mesh
size ∆t= 1

2 ∆x,∆x, 5
4 ∆x and 5

2 ∆x. In Table 4, we list the errors computed at T= 0.5 corre-
sponding to each coarse size ∆t. Again, all simulations with different ∆t are found stable.
The larger time step size, for example ∆t= 5

2 ∆x, can be applied to implement the CANN
solver such that it can be as an efficient neural network solver. We would like to point
out that this ∆t is bigger than the CFL restriction of the conventional numerical methods
for explicit temporal discretization. But CANN method is still found stable and accurate
for this ∆t.
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Figure 20: Trajectory simulation with c=3 and ∆t= 5
4 ∆x.
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Table 4: Errors of CANN method for Example (3.16) with varying ∆t.

∆t L2 L∞
1/2∆x 1.8878e-04 1.44e-02

∆x 1.7465e-04 1.21e-02
5/4∆x 1.5877e-04 9.20e-03
5/2∆x 1.8424e-04 1.03e-02

Different trajectories approximation. Next, we test the generalization ability of CANN
method by solving Eq. (3.14) under different initial conditions. Here, different initial
conditions are obtained from the exact solution (3.16) with different parameter c. In this
paper, the CANN solver, which is well trained in the accuracy test with parameter c=
3, will be utilized to solve the different initial conditions with c = 1.5 and c = 4.5. We
highlight that the well trained CANN solvers can be used as fixed numerical scheme
directly without retraining.

As a fixed numerical scheme, it does not need to change the architecture, especially
for the numbers of hidden layers and neurons. However, in order to match the different
parameter c in the simulation process, we need to change time step size. Now, we need
to change ∆t = 5

2 ∆x for c = 1.5 and ∆t = 5
6 ∆x for c = 4.5. From Fig. 21 and Fig. 22, we

can clearly see that our CANN method can capture the evolution accurately and sharply,
which is comparable to exact solutions.
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Figure 21: Apply optimal CANN to solve different initials with c=1.5.
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Figure 22: Apply optimal CANN to solve different initials with c=4.5.
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Figure 23: Apply optimal CANN to approximate different solution trajectory with u(x,t) = 4e(x−3t)cos(x−
1/10t).
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Figure 24: Apply optimal CANN to approximate different solution trajectory with u(x,t)=sin(x)esin(2x)− 7
5 t.

In addition, we also test the cases whose solution trajectories are completely different.
We utilize the well trained neural network, which is obtained from the trajectory with
c=3 in equation (3.16), to approximate the different solution trajectories with

u(x,t)=4ex−ct cos
(

x− 1
10

t
)

and u(x,t)=sin(x)esin(2x)− 7
5 t.

In Fig. 23 and Fig. 24, we can find that the performance of our CANN method in solving
different solution trajectories is very good.
Low quality data. To validate the capability for corrupted data, we also utilize the CANN
solver to deal with the learning data SN in (2.11) with η.

In the case of η = 0.02 and η = 0.05, we find that the errors of L2 and L∞ are around
10−4 and 10−3 by setting ∆x=0.05 and ∆t= 5

2 ∆x. From Fig. 25, we can observe that the
main structure of the wave propagation can be captured well in the predictions. For the
larger η=0.2 and η=0.5, Fig. 26 shows that the CANN method is fairly robust and works
well for the high frequency noise.

4 Conclusions

We have developed a cell-average based neural network to solve the Hunter-Saxton equa-
tion. The cell-average based neural network combines the neural network with the fi-
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Figure 25: Trajectory simulation with corruption learning data by η=0.02 (top) and η=0.05 (bottom).
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Figure 26: Trajectory simulation with corruption learning data by η=0.2 (top) and η=0.5 (bottom).

nite volume method, where a feedforward network is formed to learn the cell average
between two consecutive time steps, based on the integral format of the finite volume
method. The training data set is generated by cell average based on one single solution
trajectory which is usually the initial value of the given PDE. The training process uses
multiple time levels of cell averages to maintain the stability and control the accumu-
lation errors in time. Once being well trained, this method can be implemented like a
explicit finite volume scheme and suitable for solving the Hunter-Saxton equation with
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different initial value conditions, while we don’t need to retrain the neural network. We
also utilize the CANN method to deal with the learning data with noise to demonstrate
its capability and robustness. Numerical tests are carried out to demonstrate effective-
ness, accuracy, capability and robustness of the CANN method. Applications for more
complicated nonlinear PDEs will be conducted in the future work.
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