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Abstract. We present a primal-dual discontinuous Galerkin finite element method for
a type of ill-posed elliptic Cauchy problem. It is shown that the discrete problem at-
tains a unique solution, if the solution of the ill-posed elliptic Cauchy problems is
unique. An optimal error estimate is obtained in a H1-like norm. Numerical exper-
iments are provided to demonstrate the efficiency of the proposed method.
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1 Introduction

In this paper, we consider the following ill-posed elliptic Cauchy problem
−∇·(a∇u)= f in Ω,
u= g1 on Γd,
(a∇u)·n= g2 on Γn,

(1.1)

where Ω is a bounded polygonal or polyhedral domain in Rd(d = 2,3) with Lipschitz
continuous boundary ∂Ω, Γd and Γn are polygonal subsets of the boundary ∂Ω, n is a unit
outward normal direction to ∂Ω, f ∈L2(Ω). The coefficient a(x)∈W1,∞(Ω) is assumed to
be bounded in Ω, i.e., there exist positive constants amin and amax such that amin≤ a(x)≤
amax,x∈Ω. The boundary data g1 and g2 are two given functions defined on Γd and Γn,
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respectively. We denote the complement of the Neumann boundary by Γc
n :=∂Ω\Γn. We

assume that problem (1.1) is ill-posed, that is, Γd∩Γn 6=∅ or Γd∪Γn 6=∂Ω.
Contrary to a well-posed elliptic problem, the ill-posedness of the problem (1.1) re-

sults from some special practical applications, where the Dirichlet data g1 and the Neu-
mann data g2 are both available on a common part of domain boundary (i.e., Γd∩Γn 6=∅),
and the boundary conditions or its data may be lost on a part of domain boundary (i.e.,
Γd∪Γn 6= ∂Ω). For instance, the elliptic Cauchy problem plays a crucial role to use the
electrical impedance tomography for noninvasive detection [7, 23]. In this application,
a weak current is applied to the electrodes on the surface of the human body and then
the voltage values on the electrodes is measured. It means that Γd = Γn in the model
problem. According to the relationship between the voltage on Γd and the current on
Γn, the internal electrical impedance of the human body or the change value of electrical
impedance can be reconstructed. For more applications and relative results on elliptic
Cauchy problem we refer to [2, 9–11, 19, 20, 22] and the references cited therein.

It is well known that the Cauchy problem defined as (1.1) is severely ill-posed [6]
and even when a solution exists, it does not depend continuously on the boundary data.
Therefore, how to design accuracy computational methods for approximating the ill-
posed elliptic Cauchy problem remains a challenging topic. Most numerical methods
are designed based on the well-posedness of the physical model problem. Following this
basic idea, an important strategy for numerically approximating the elliptic Cauchy prob-
lem is to regularize the ill-posed problem to obtain a well-posed problem. The reduced
well-posed problem then can be solved numerically using standard approximation tech-
niques, such as finite element methods (FEM), boundary element methods and hybrid
methods. We refer to [3,4,8,12,13,24] for regularization methods and related approxima-
tion on the ill-posed Cauchy problem.

In 2013, Burman introduced the primal-dual stabilized finite element methods for ill-
posed elliptic problem in [5]. This primal-dual method discretized the ill-posed problem
through a constrained optimization problem. The unstable discrete problem was then
stabilized by using techniques known from the theory of the stabilized finite element
methods. Later, the method was further developed for the approximation of elliptic data
assimilation problems [14], parabolic data reconstruction problems [15, 16], well-posed
convection-diffusion problems [18]. As an extension of this method, a primal-dual weak
Galerkin finite element methods were proposed in [25, 26] by employing weak finite ele-
ment functions to approximate the solution of the elliptic Cauchy problem.

Motivated by the work of Burman [5], we develop a new primal-dual method which
is based on the discontinuous Galerkin finite element spaces. Although the idea in [5]
can be applied to any finite dimensional space, we point out that our techniques com-
pletely differ from Burman [5] in the numerical analysis. Specifically, the convergence
analysis in [5] is based on the conditional stability estimates for the exact solution of
Cauchy problem, while our analysis is derived by the consistency of the discrete scheme
(in the sense that the exact solution satisfies the discrete system) and a special norm on
the discontinuous Galerkin finite element spaces. One of our main results indicates that
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it attains a unique solution for the discrete scheme if the solution of the ill-posed elliptic
Cauchy problems is unique. Another main result is that our method enjoys the optimal
convergence order in a discrete Sobolev norm.

Throughout this paper, for any m≥ 0, we adopt the notation Hm(D) to indicate the
usual Sobolev space on domain D⊆Ω equipped with the norm ‖·‖m,D and seminorm
|·|m,D. The inner product in Hm(D) is denoted by (·,·)m,D. The space H0(D) coincides
with L2(D), whose norm and inner product are denoted by ‖·‖D and (·,·)D, respectively.
When D=Ω,we omit the subscript D.

The rest of the paper is organized as follows. Section 2 introduces the model Cauchy
problem together with the existence and uniqueness theory of the solution. In Section 3,
the primal-dual discontinuous Galerkin finite element method is established for solving
the ill-posed elliptic Cauchy problem; the existence and uniqueness of the numerical
solution are proved. Section 4 is devoted to the error analysis for the discrete scheme.
In Section 5, some numerical examples are provided to illustrate the performance of the
proposed method.

2 The elliptic Cauchy problem

From the Schwartz reflection principle [21], we know that if the boundary data g1 and
g2 are chosen arbitrarily, the existence of solution can not be guaranteed. However, there
exists a dense subset M of H

1
2 (Γd)×H−

1
2 (Γn) such that the problem (1.1) has a solution for

any Cauchy data (g1,g2)∈M. Moreover, if a solution exists, it must be unique under the
condition that the (d−1)-dimensional measure of Γd∩Γn is non-zero. For the complete
results, as well as full proofs, we refer to [3]. Here we only present the result on the
uniqueness of the solution, which is useful for our numerical analysis.

Lemma 2.1. Assume that Ω is an open bounded and connected domain in Rd(d = 2,3) with
Lipschitz continuous boundary ∂Ω. Denote by Γd the portion of the Dirichlet boundary and Γn
the Neumann portion. Assume that Γd∩Γn is a non-trivial portion of ∂Ω. Then, the solutions of
the elliptic Cauchy problem (1.1), if they exist, are unique.

Throughout this paper, we assume that data Cauchy data g1×g2 ∈M and Γd∩Γn is
a nontrivial portion of the domain boundary such that there exists a unique solution
u∈H3/2(Ω) for the elliptic Cauchy problem (1.1).

3 Primal-dual discontinuous Galerkin finite element
formulation

Let Th =∪{K} be a regular triangular or tetrahedral mesh of Ω parameterized by mesh
size h=maxK∈Th{hK}, where hK is the diameter of element K. Denote by Eh =∪{e : e⊂
∂K, K∈Th} the union of all edges/faces of elements in Th and set E0

h = Eh\∂Ω. For any
edge/face e∈Eh, denoted by he its length.
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To define the discontinuous Galerkin finite element scheme, we need to introduce the
average and jump on the element boundaries. Let K1 and K2 be two adjacent elements
with common edge/face e, and let n1 and n2 be the unit normal vectors on e exterior to
K1 and K2, respectively. For a scalar q, we define the average {·} and the jump [·] on e∈Eh
by

{q}= 1
2
(q|K1+q|K2), e∈E0

h , {q}=q, e⊂∂Ω,

[q]=q|K1 n1+q|K2 n2, e∈E0
h , [q]=qn, e⊂∂Ω.

Similarly, for a vector function w, we define

{w}= 1
2
(w|K1+w|K2), e∈E0

h , {w}=w, e⊂∂Ω,

[w]=w|K1 ·n1+w|K2 ·n2, e∈E0
h , [w]=w·n, e⊂∂Ω.

For a given division Th, we define the discontinuous finite element spaces:

Vh ={v∈L2(Ω) : v|K∈Pr(K), ∀K∈Th},

where Pr(K) denotes the set of all polynomials of degree no more than r defined on K.
To simplify the notations, we use the following L2 inner products and norms:

(v,w)h = ∑
K∈Th

(v,w)K, ‖v‖2
h =(v,v)h,

〈v,w〉e =
∫

e
vwds, ‖v‖2

e = 〈v,v〉e.

For a subset S⊂Eh, we also use

〈w,v〉S= ∑
e∈S
〈w,v〉e.

Multiplying the first equation of the system (1.1) by vh∈Vh and using integration by
parts, we obtain

∑
K∈Th

(a∇u,∇vh)K− ∑
K∈Th

〈(a∇u)·n,vh〉∂K =( f ,vh)h. (3.1)

For all v∈∏K∈Th
L2(∂K) and all q∈∏K∈Th

L2(∂K)d, a straightforward computation gives
(cf. [27])

∑
K∈Th

〈q·n,v〉∂K = ∑
e∈Eh

〈{q},[v]〉e+ ∑
e∈E0

h

〈[q],{v}〉e. (3.2)

Applying (3.2) and noting the fact that [a∇u]= 0 for u∈H3/2(Ω) on e∈E0
h , we have

from (3.1) that

(a∇u,∇vh)h− ∑
e∈E0

h∪Γc
n

〈{a∇u},[vh]〉e =( f ,vh)h+ ∑
e∈Γn

〈g2,vh〉e. (3.3)
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Thus we derive a discrete scheme: find uh∈Vh with uh = gh
1 on Γd such that

ah(uh,vh)=( f ,vh)h+ ∑
e∈Γn

〈g2,vh〉e, ∀vh∈Vh, (3.4)

where
ah(w,v)=(a∇w,∇v)h− ∑

e∈E0
h∪Γc

n

〈{a∇w},[v]〉e,

and gh
1 is the discontinuous finite element approximation of g1.

Unfortunately, the discrete problem (3.4) is not well-posed, even if we follow the tech-
nique of the discontinuous finite element method to add an appropriate stabilizer. To
overcome this difficulty, we apply the strategy in [5] to present a primal-dual discon-
tinuous finite element method. First, we couple the discrete problem (3.4) with its dual
problem which seeks λh∈Vh such that

ah(vh,λh)=0, ∀vh∈Vh, (3.5)

where λh is the Lagrange multiplier. Next, we stabilize the primal-dual equations (3.4)-
(3.5) via some appropriate stabilizers which should include the stabilized terms for dis-
continuous finite element, boundary conditions, as well as boundary data.

Let V(h)=Vh+H3/2(Ω). For any u,v∈V(h), we introduce the following bilinear forms

sd(u,v)= ∑
e∈E0

h∪Γd

h−1
e 〈[u],[v]〉e,

sn(u,v)= ∑
e∈E0

h∪Γn

he〈[∇u],[∇v]〉e,

s(u,v)= ∑
e∈E0

h∪Γd∪Γc
n

h−1
e 〈[u],[v]〉e.

Now, we define the primal-dual discontinuous Galerkin finite element approximation
for problem (1.1): find (uh,λh)∈Vh×Vh such that

sd(uh,v)+sn(uh,v)−ah(v,λh)= ∑
e∈Γd

h−1
e 〈g1,v〉e+ ∑

e∈Γn

he

〈
a−1g2,

∂v
∂n

〉
e
, ∀v∈Vh, (3.6a)

s(λh,w)+ah(uh,w)=( f ,w)h+ ∑
e∈Γn

〈g2,w〉e, ∀w∈Vh. (3.6b)

It is easy to check that the solution u ∈ H3/2(Ω) of problem (1.1) together with λ = 0
satisfies

sd(u,v)+sn(u,v)−ah(v,λ)= ∑
e∈Γd

h−1
e 〈g1,v〉e+ ∑

e∈Γn

he

〈
a−1g2,

∂v
∂n

〉
e
, ∀v∈Vh, (3.7a)

s(λ,w)+ah(u,w)=( f ,w)h+ ∑
e∈Γn

〈g2,w〉e, ∀w∈Vh. (3.7b)

The following result states the well-posedness of the discrete problem (3.6a)-(3.6b).
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Theorem 3.1. Assume that the solution of the elliptic Cauchy problem (1.1) exists and Γd∩Γn is
a non-trivial portion of ∂Ω. Then the primal-dual discontinuous Galerkin finite element scheme
(3.6a)-(3.6b) has a unique solution pair (uh,λh)∈Vh×Vh.

Proof. Since the discrete problem (3.6a)-(3.6b) is essentially a linear system in which the
number of the equations is the same as the number of unknowns, it suffices to prove that
the homogeneous problem has only the trivial solution. Let f = 0, g1 = 0 and g2 = 0 in
(3.6a)-(3.6b). Taking v= uh in (3.6a), w=λh in (3.6b) and adding the two equations, we
obtain

sd(uh,uh)+sn(uh,uh)+s(λh,λh)=0.

By the definitions of bilinear forms sd(·,·), sn(·,·) and s(·,·), we get

sd(uh,uh)= sn(uh,uh)= s(λh,λh)=0,

which further reduces to

uh =0, e⊂Γd,
∂uh

∂n
=0, e⊂Γn, [uh]e =[∇uh]e =0, e∈E0

h , (3.8a)

λh =0, e⊂Γd∪Γc
n, [λh]e =0, e∈E0

h . (3.8b)

It follows from (3.8a), (3.8b), (3.6a) and (3.6b) that

ah(v,λh)=0, ∀v∈Vh,
ah(uh,w)=0, ∀w∈Vh,

which together with (3.8b) leads to

(a∇v,∇λh)h =0, ∀v∈Vh, (3.9a)

(a∇uh,∇w)h− ∑
e∈E0

h∪Γc
n

〈{a∇uh},[w]〉e =0, ∀w∈Vh. (3.9b)

Letting v=λh in (3.9a), we have

(a∇λh,∇λh)h =0,

which implies λh is piecewise constant on Th. Hence we have λh≡0 in Ω from (3.8b).
It remains to show that uh≡ 0 in Ω. First, we consider the case uh|K ∈ P1(K),K∈Th.

From (3.8a), it is easy to verify that uh≡0 in Ω. The next is to consider the case uh|K∈Pr(K),
K ∈ Th, r > 1. It follows from (3.8a) that uh ∈ C1(Ω)∩H2(Ω). Using (3.9b), (3.2) and
integration by parts, we have

−(∇·(a∇uh),w)=0, ∀w∈Vh. (3.10)

Let a(x) be a polynomial of degree no more than two. Taking w=∇·(a∇uh) in (3.10), we
obtain

−∇·(a∇uh)=0 in Ω. (3.11)
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From (3.8a) and (3.11), uh satisfies the following elliptic Cauchy problem

−∇·(a∇uh)=0 in Ω,
uh =0 on Γd,
(a∇uh)·n=0 on Γn.

It follows from Lemma 2.1 that uh≡ 0 in Ω when Γd∩Γn 6=∅. We complete the proof of
the theorem.

4 Error estimate

This section concerns the error analysis for the primal-dual discontinuous Galerkin finite
element method defined in the previous section.

Introduce the following semi-norms for v∈V(h):

|v|2Γd
= sd(v,v), |v|2Γn

= sn(v,v), |v|2Γ = s(v,v), |u|21,h =(∇u,∇u)h.

The following trace inequality can be found in [1]. For w∈H1(K) and for an edge e of K,

‖w‖2
e≤Ctra(h−1

e |w|2K+he|w|21,K), K∈Th. (4.1)

Let Ph : φ∈L2(Ω)→Phφ∈Vh be the L2 projection defined by

(φ−Phφ,q)K =0, ∀q∈Pr(K), K∈Th.

It can be verified that the operator enjoys the approximating property [28]:

‖φ−Phφ‖K+hK‖∇(φ−Phφ)‖K≤Chm
K‖φ‖m,K, 1≤m≤ r+1. (4.2)

The following lemma is important in the error analysis.

Lemma 4.1. Let (u,λ= 0) be the solution of the variational problem (3.7a)-(3.7b) and (uh,λh)
be the solution of primal-dual discontinuous Galerkin finite element method (3.6a)-(3.6b). Let
eu =uh−Phu and eλ =λh−λ=λh. We assume u∈Hr+1(Ω), r≥1. Then

|eλ|21,h≤C
(
|eu|2Γd

+|eu|2Γn
+|eλ|2Γ+h2r‖u‖2

r+1
)
, (4.3)

where C depends on Ctra, amin and amax.

Proof. Subtracting (3.7a) from (3.6a), we obtain the following error equation:

sd(uh−u,v)+sn(uh−u,v)−ah(v,λh)=0, ∀v∈Vh, (4.4)

which can be rewritten as

sd(eu,v)+sn(eu,v)−ah(v,eλ)= sd(u−Phu,v)+sn(u−Phu,v), ∀v∈Vh. (4.5)
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Setting v= eλ in (4.5) and using the definition of the bilinear form ah(·,·), we get

amin|eλ|21,h≤sd(eu,eλ)+sn(eu,eλ)−sd(u−Phu,eλ)

−sn(u−Phu,eλ)+ ∑
e∈E0

h∪Γc
n

〈{a∇eλ},[eλ]〉e. (4.6)

It follows from (4.6), Young’s inequality, trace inequality (4.1) and the inverse inequality
that

amin|eλ|21,h≤|eu|Γd |eλ|Γ+|eu|Γn |eλ|Γn +|u−Phu|Γd |eλ|Γ+|u−Phu|Γn |eλ|Γn

+
(

∑
e∈E0

h∪Γc
n

he‖{a∇eλ}‖2
e

) 1
2 |eλ|Γ

≤1
2
|eu|2Γd

+
1
2
|eλ|2Γ+

1
2ε
|eu|2Γn

+
ε

2
|eλ|2Γn

+
1
2
|u−Phu|2Γd

+
1
2
|eλ|2Γ

+
1
2ε
|u−Phu|2Γn

+
ε

2
|eλ|2Γn

+ε ∑
e∈E0

h∪Γc
n

he‖{a∇eλ}‖2
e +

1
4ε
|eλ|2Γ

≤1
2
|eu|2Γd

+
1
2ε
|eu|2Γn

+
(

1+
1
4ε

)
|eλ|2Γ+

1
2
|u−Phu|2Γd

+
1
2ε
|u−Phu|2Γn

+εCtra max(1,a2
max)‖∇eλ‖2, (4.7)

and choosing ε small enough, we have

|eλ|21,h≤C
(
|eu|2Γd

+|eu|2Γn
+|eλ|2Γ+|u−Phu|2Γd

+|u−Phu|2Γn

)
,

where C depends on Ctra, amin and amax. The proof is completed by using the trace in-
equality (4.1) and the approximating property (4.2).

Theorem 4.1. Under the assumptions of Lemma 4.1, there exists a constant C>0 such that the
following error estimates hold

|uh−Phu|Γd +|uh−Phu|Γn≤Chr‖u‖r+1, (4.8a)
|λh|Γ+|λh|1,h≤Chr‖u‖r+1. (4.8b)

Proof. Subtracting (3.7b) from (3.6b), we obtain

s(λh−λ,w)+ah(uh−u,w)=0, ∀w∈Vh, (4.9)

which implies
s(eλ,w)+ah(eu,w)= ah(u−Phu,w), ∀w∈Vh. (4.10)

Taking v= eu in (4.5), w= eλ in (4.10), and adding the two equations lead to

|eu|2Γd
+|eu|2Γn

+|eλ|2Γ = sd(u−Phu,eu)+sn(u−Phu,eu)+ah(u−Phu,eλ).
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Then, we have from the Cauchy-Schwarz and Young’s inequality that

|eu|2Γd
+|eu|2Γn

+|eλ|2Γ
≤|u−Phu|Γd |eu|Γd +|u−Phu|Γn |eu|Γn +amax|u−Phu|1,h|eλ|1,h

+
(

∑
e∈E0

h∪Γc
n

he‖{a∇(u−Phu)}‖2
e

) 1
2 |eλ|Γ

≤1
2
|eu|2Γd

+
1
2
|u−Phu|2Γd

+
1
2
|eu|2Γn

+
1
2
|u−Phu|2Γn

+
amax

2α
|u−Phu|21,h+

amaxα

2
|eλ|21,h

+
1
2 ∑

e∈E0
h∪Γc

n

he‖{a∇(u−Phu)}‖2
e +

1
2
|eλ|2Γ,

which reduces to

|eu|2Γd
+|eu|2Γn

+|eλ|2Γ
≤|u−Phu|2Γd

+|u−Phu|2Γn
+

amax

α
|u−Phu|21,h+amaxα|eλ|21,h

+ ∑
e∈E0

h∪Γc
n

he‖{a∇(u−Phu)}‖2
e , (4.11)

where α>0 is a parameter.
For sufficiently small α, using (4.11) and Lemma 4.1, we have

|eu|2Γd
+|eu|2Γn

+|eλ|2Γ
≤C
(
|u−Phu|2Γd

+|u−Phu|2Γn
+|u−Phu‖2

1,h

+ ∑
e∈E0

h∪Γc
n

he‖{a∇(u−Phu)}‖2
e +h2r‖u‖2

r+1

)
. (4.12)

It follows from (4.12), the trace inequality (4.1) and the approximating property (4.2) that

|eu|2Γd
+|eu|2Γn

+|eλ|2Γ≤Ch2r‖u‖2
r+1, (4.13)

which gives (4.8a).
Substituting (4.13) into (4.3), we obtain

|eλ|21,h≤Ch2r‖u‖2
r+1. (4.14)

The proof of (4.8b) is completed by combining (4.13) and (4.14).

We define a norm |||·||| for v∈Vh as follows:

|||v|||2= |v|2Γd
+|v|2Γn

+ sup
w∈Vh

|ah(v,w)|
‖w‖1,Γ

,
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where ‖v‖2
1,Γ=|v|21,h+|v|2Γ. Tracking the proof of Theorem 3.1, it is easy to check that |||·|||

defines a norm in the discontinuous finite element spaces Vh.
Now, we can derive the error estimate for the primal-dual discontinuous Galerkin

finite solution in the following theorem.

Theorem 4.2. Let u and uh be the solutions of (1.1) and (3.6a)-(3.6b), respectively. There exists
a constant C such that the following error estimate holds:

|||uh−Phu|||≤Chr‖u‖r+1.

Proof. It follows from (4.10), Cauchy-Schwarz inequality, the trace inequality (4.1), the
approximating property (4.2) and the estimate (4.8b) that

|ah(eu,w)|≤|s(eλ,w)|+|ah(u−Phu,w)|
≤|eλ|Γ|w|Γ+amax|u−Phu|1,h|w|1,h

+
(

∑
e∈E0

h∪Γc
n

he‖{a∇(u−Phu)}‖2
e

) 1
2 |w|Γ

≤Chr‖u‖r+1‖w‖1,Γ,

which implies

sup
w∈Vh

|ah(eu,w)|
‖w‖1,Γ

≤Chr‖u‖r+1. (4.15)

Using estimates (4.8a) and (4.15), we have

|||eu|||≤Chr‖u‖r+1, (4.16)

which completes the proof.

Corollary 4.1. Let u and uh be the solutions of (1.1) and (3.6a)-(3.6b), respectively. There exists
a constant C such that the following error estimate holds:

|||u−uh|||≤Chr‖u‖r+1.

Proof. By the definition of the triple norm, Cauchy-Schwarz inequality, the trace inequal-
ity (4.1), the inverse inequality and the approximating property (4.2), we obtain

|||u−Phu|||≤Chr‖u‖r+1,

which completes the proof by applying Theorem 4.2 and the triangle inequality.
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5 Numerical experiments

In this section, we provide some numerical results to show the performance of the pro-
posed method.

Let us consider problem (1.1) on the domain Ω=(0,1)2 with the diffusion coefficient
a(x)=1. The source term f =−∇·(a∇u) in Ω and the Cauchy boundary data g1 =u on
Γd and g2= a∇u·n on Γn are chosen by the given exact solution u=u(x).

In the numerical experiments, we first partition Ω into N×N uniform squares, and
then each square is divided into two triangles by its diagonal line, resulting in a mesh Th
with size

√
2/N. The refined mesh Th/2 is obtained by connecting the midpoint of each

edge of elements in Th with straight line, and this procedure generates a mesh series Th/2j ,
j=0,1,···. The piecewise linear polynomial spaces are used in the discontinuous Galerkin
finite element method (3.6a)-(3.6b) solving the elliptic Cauchy problem (1.1). The error
between the numerical solution of (3.6a)-(3.6b) and the L2 projection of the exact solution
for elliptic Cauchy problem (1.1) is computed in the following norms:

‖uh−Phu‖h =
(

∑
K∈Th

(uh−Phu,uh−Phu)K

) 1
2
,

‖uh−Phu‖1,h =
(
‖uh−Phu‖2

h+‖∇(uh−Phu)‖2
h

) 1
2
,

‖uh−Phu‖1,Γ =
(
‖∇(uh−Phu)‖2

h+|uh−Phu|2Γ
) 1

2
.

Tables 1-4 show the numerical results for different exact solutions when the boundary
condition is set by

Γd :={x=0; y∈ (0,1)}∪{x=1; y∈ (0,1)}∪{x∈ (0,1); y=0}

and

Γn :={x∈ (0,1); y=0}∪{x∈ (0,1); y=1}∪{x=1; y∈ (0,1)}

as shown in Fig. 1. We see that the primal-dual discontinuous Galerkin finite element
method has optimalO(h2) accuracy with respect to ‖·‖h, andO(h) accuracy with respect
to ‖·‖1,h and ‖·‖1,Γ.

In Table 5, we list some numerical results when the exact solutions are given by

u1(x,y)= x2+y2−10xy, u2(x,y)=sin(x)sin(y) and u3(x,y)=cos(x)cos(y),

respectively. In this experiment, we chose

Γd :={x=0; y∈ (0,1)}∪{x=1; y∈ (0,1)}∪{x∈ (0,1), y=0},
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and

Γn =Γd,

see Fig. 2. It can be easily observed that the convergence rate in ‖·‖1,h is of the optimal

Table 1: Convergence rates for the exact solution u=30xy(1−x)(1−y).

N ‖uh−Phu‖h ‖uh−Phu‖1,h ‖uh−Phu‖1,Γ
error Order Error Order Error Order

4 0.0542 N/A 1.3202 N/A 1.6000 N/A
8 0.0142 1.9297 0.6807 0.9556 0.8729 0.8741

16 0.0037 1.9611 0.3432 0.9882 0.4543 0.9424
32 9.3459e-04 1.9657 0.1720 0.9968 0.2315 0.9726
64 2.3891e-04 1.9679 0.0860 0.9989 0.1168 0.9866
128 6.0827e-05 1.9737 0.0430 0.9995 0.0587 0.9934

Table 2: Convergence rates for the exact solution u= x2+y2−10xy.

N ‖uh−Phu‖h ‖uh−Phu‖1,h ‖uh−Phu‖1,Γ
error Order Error Order Error Order

4 0.0508 N/A 1.0744 N/A 1.4922 N/A
8 0.0130 1.9681 0.5410 0.9900 0.7739 0.8741

16 0.0033 1.9721 0.2711 0.9968 0.3938 0.9424
32 8.4175e-04 1.9756 0.1356 0.9993 0.1986 0.9726
64 2.1316e-04 1.9814 0.0678 0.9999 0.0997 0.9866
128 5.3760e-05 1.9874 0.0339 1.0000 0.0500 0.9934

Table 3: Convergence rates for the exact solution u=sin(x)sin(y).

N ‖uh−Phu‖h ‖uh−Phu‖1,h ‖uh−Phu‖1,Γ
error Order Error Order Error Order

4 0.0039 N/A 0.0824 N/A 0.1131 N/A
8 9.9720e-04 1.9787 0.0413 0.9985 0.0584 0.9533

16 2.5436e-04 1.9710 0.0206 1.0022 0.0296 0.9799
32 6.5042e-05 1.9674 0.0103 1.0020 0.0149 0.9911
64 1.6560e-05 1.9736 0.0051 1.0010 0.0075 0.9957
128 4.1908e-06 1.9824 0.0026 1.0004 0.0037 0.9978

Table 4: Convergence rates for the exact solution u=cos(x)cos(y).

N ‖uh−Phu‖h ‖uh−Phu‖1,h ‖uh−Phu‖1,Γ
error Order Error Order Error Order

4 0.0037 N/A 0.0757 N/A 0.0905 N/A
8 8.7954e-04 2.0544 0.0374 1.0197 0.0456 0.9878

16 2.1840e-04 2.0098 0.0186 1.0095 0.0229 0.9934
32 5.5619e-05 1.9733 0.0092 1.0046 0.0115 0.9963
64 1.4273e-05 1.9623 0.0046 1.0020 0.0058 0.9978
128 3.6486e-06 1.9678 0.0023 1.0008 0.0029 0.9987
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Figure 1: The computational domain and boundary conditions.

Figure 2: The computational domain and boundary conditions.

order O(h) for the different exact solution u1, u2 and u3.
Table 6 shows the performance of the primal-dual discontinuous Galerkin method

where the boundary conditions are chosen as B.C. I, B.C. II and B.C. III, see Fig. 3. Specif-
ically,

• B.C. I: Γd := {x= 0; y∈ (0,1)}∪{x∈ (0,1); y= 0} and Γn := {x= 1; y∈ (0,1)}∪{x∈
(0,1); y=1}.

• B.C. II: Γd :={x∈ (0,1); y=0}∪{x∈ (0,1); y=1}∪{x=1; y∈ (0,1)} and Γn =Γd.

• B.C. III: Γd :={x=0; y∈ (0,1)}∪{x∈ (0,1); y=0}∪{x∈ (0,1); y=1} and Γn :={x∈
(0,1); y=1}∪{x=0; y∈ (0,1)}∪{x=1; y∈ (0,1)}.

Note that the elliptic Cauchy problem (1.1) with the boundary condition, B.C. I, re-
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Table 5: Convergence rates in norm ‖·‖1,h for different exact solutions.

N ‖uh−Phu1‖1,h ‖uh−Phu2‖1,h ‖uh−Phu3‖1,h
error Order Error Order Error Order

4 1.1025 N/A 0.0865 N/A 0.0815 N/A
8 0.5504 1.0022 0.0430 1.0094 0.0403 1.0168
16 0.2748 1.0020 0.0214 1.0041 0.0206 0.9682
32 0.1375 0.9990 0.0107 0.9983 0.0106 0.9522
64 0.0689 0.9961 0.0054 0.9862 0.0055 0.9523

128 0.0346 0.9925 0.0028 0.9669 0.0029 0.9461

Table 6: Convergence rates in norm ‖·‖1,h for the exact solution u= x2+y2−10xy with different boundary
conditions.

N B.C. I B.C. II B.C. III
error Order Error Order Error Order

4 1.0845 N/A 1.1025 N/A 1.0744 N/A
8 0.5438 0.9958 0.5504 1.0022 0.5410 0.9900
16 0.2719 1.0003 0.2748 1.0020 0.2711 0.9968
32 0.1358 1.0012 0.1375 0.9990 0.1356 0.9993
64 0.0679 1.0009 0.0689 0.9961 0.0678 0.9999

128 0.0339 1.0006 0.0347 0.9925 0.0339 1.0000

duces into a standard mixed boundary value problem, while the Cauchy problem with
the other three boundary conditions is still ill-posed. The purpose of the experiment is to
compare the efficiency of the primal-dual discontinuous Galerkin finite element methods
for classical well-posed elliptic problem and the ill-posed elliptic Cauchy problem. The
numerical results show that the convergence rate in ‖·‖1,h is of optimal order O(h) both
for well-posed and ill-posed elliptic problem.

In practice, the boundary data always contains uncertainties, and thus it is essential
to test the primal-dual discontinuous Galerkin finite element method with the noise data.
In this test, the exact solution is chosen as u= cos(x)cos(y) and the Dirichlet and Neu-

(a) B.C. I (b) B.C. II (c) B.C. III

Figure 3: The computational domain and boundary conditions.
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Figure 4: Numerical solution uh (left) and error function u−uh (right) with the exact cauchy data.

Figure 5: Numerical solution uh (left) and error function u−uh (right) with a random perturbation by 0.001∗
(0.5−rand) of the cauchy data.

mann boundary conditions are both imposed on {x ∈ (0,1), y = 0}. Fig. 4 presents the
numerical solution uh and the error function u−uh with the exact boundary data com-
puted according to the given solution u = cos(x)cos(y). Figs. 5-7 show the numerical
results when the boundary data is given by imposing a random noise ν∗(0.5−Rand) on
the exact boundary data. Here Rand is the MatLab function that generates rand numbers
in the range (0,1), and ν is a constant chosen as 0.001,0.01 and 0.1, respectively. Obvi-
ously, the increase in the amplitude of the random noise data has made the deviation
of the error function from 0 become larger, but the proposed primal-dual discontinuous
Galerkin finite element method work relatively well.
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Figure 6: Numerical solution uh (left) and error function u−uh (right) with a random perturbation by 0.01∗
(0.5−rand) of the cauchy data.

Figure 7: Numerical solution uh (left) and error function u−uh (right) with a random perturbation by 0.1∗
(0.5−rand) of the cauchy data.

6 Conclusions

In this paper, we have presented a primal-dual discontinuous Galerkin finite element
method for a type of ill-posed elliptic Cauchy problem. It is shown that the primal-dual
discontinuous Galerkin finite element method attains a unique solution, if the solution of
the ill-posed elliptic Cauchy problems is unique. Based on the consistency of the discrete
scheme (in the sense that the exact solution satisfies the discrete system), the optimal
convergence in a discrete Sobolev norm is established. A possible future work is to extend
our analysis to the adaptive primal-dual discontinuous Galerkin finite element method
for solving the ill-posed elliptic Cauchy problem.
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