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Abstract. This paper proposes the memristor-memristor (M-M) and the memristor-
gradient descent (M-GD) neural networks based on the classical back propagation neu-
ral network. The presented models are employed to predict the compressive strength
of high-performance hydraulic concrete (HPC), and are tested by well-fitting and accu-
rate predictions with the experimental data. The developed algorithms are also evalu-
ated through comparisons with the classical learning algorithms including the gradi-
ent descent method, the gradient descent with momentum, the gradient descent with
adaptive learning rate, the elastic gradient descent, and the Levenberg-Marquardt al-
gorithm. It is observed that the established M-GD generally outperforms the classical
algorithms and M-M. The constructed M-M neural network has a quite high conver-
gence speed, and the strength prediction error induced by it can roughly satisfy the
demands in construction engineering. This work extends the nonlinear memristor to a
brand-new field, and provides an effective methodology for forecasting the compres-
sive strength prediction of HPC.

AMS subject classifications: 92B20, 65K05, 60G25
Key words: Artificial neural network, memristor, high-performance concrete, compressive
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1 Introduction

As one of the most widely used building materials in modern engineering structures in
the world, the concrete plays an important role in the building construction and civil en-
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gineering. Driven by the development of modern capital construction and new construc-
tion technology, the special demand of concrete performance in construction industry
becomes critical. The high-performance concrete (HPC) [1–3] is a kind of construction
material with many special properties which include high workability, high strength,
high volume stability, and high durability [4]. The HPC has gained increasing popularity
and been extensively studied over the last decade. It has potential to be used in a large
number of huge projects [5] such as nuclear reactor, sea-crossing bridge, nuclear waste
containers, and submarine tunnel.

Compressive strength is a critical mechanical property to measure the quality of HPC
which is a hot topic in the HPC research recently. Compared with strength prediction of
conventional concrete, evaluation of HPC strength is relatively difficult. Chou et al. [6]
demonstrated that the compressive strength of HPC shows a highly non-linear relation-
ship with each component of concrete, and so some characteristics of the HPC are not
completely understood. This unfortunately leads to the inability of traditional predicting
methods [7, 8], which are generally based on maturity concept [9, 10] of concrete or the
value of fresh concrete test [11] to be used.

In the last decade, the artificial neural network (ANN) [12–15] has been exten-
sively employed in determining the concrete strength due to its self-organization, self-
adaptability, reasoning ability, and self-learning ability [16]. Kasperkiewicz et al. [17]
stated that the ANN could be applied to forecast the compressive strength of HPC and
it also shows promising potentials in optimizing concrete mixes. Nehdi et al. [18] illus-
trated that the ANN is able to accurately estimate the concrete slump, the segregation,
and the filling capacity. It is also proved by Kim et al. [19] that the ANN is a powerful
tool in forecasting the compressive strength of concrete based on the mix proportions.
Furthermore, combined with other techniques, the neural network has been improved to
some extent [20–22]. The results show that the neural network model has high accuracy
and strong predictive ability, and its superiorities in the strength prediction of HPC with
complex internal rules are more obvious.

Considering the complexity of the neural network itself, its weight needs to be con-
stantly adjusted and updated. For the circuit implementation of neural networks, the
circuit design of artificial neural network synapses has always been a thorny problem.
The integrated circuits and ultra-large-scale integrated circuits have been tried to com-
plete the design of artificial synapses. However, due to the complexity of circuits and
traditional devices, its large size and high power consumption make it difficult for such
artificial synaptic circuits to be highly integrated, and also make its density difficult to
achieve the requirements of biological neural networks. Currently, transistors are used
to construct hardware circuits of neural networks which are mainly for the simulation of
neurons and synapses. However, this technical settlement derived from the Very Large
Scale Integration Circuit is restricted by the huge number of transistors required for the
simulation and its high power consumption. In addition, synaptic transmission charac-
teristics are affected by time and space. Therefore, it is a tough work to construct the
hardware circuit of the neural network with the existing components. Fortunately, the
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emergence of memristor provides the possibility to resolve this problem. The memristor
is the fourth fundamental element, which was originally envisioned by circuit theorist
Chua [23] in 1971. In recent years, it has been fully demonstrated its usefulness in the
integrated circuit design [24], the large-capacity non-volatile memory [25], the artificial
intelligence [26] and the neural network [27,28]. This paper makes the first attempt to em-
ploy the memristor-based neural network to the compressive strength prediction of HPC.
Based on the classical back propagation (BP) neural network, the memristor-memristor
(M-M) neural network and the memristor-gradient descent (M-GD) neural network are
firstly developed in this paper. These neural networks are a step closer to the circuit
implementation, which occupy less computer resources and can achieve high efficiency.
With the data mined from other references, the proposed models are adopted and vali-
dated to the compressive strength fitting and prediction. From the results, it is confirmed
that the built M-M neural network has a quite high convergence speed, and the strength
prediction error can roughly meet the demands in construction engineering. In addi-
tion, the neural network combining the classical learning algorithms and memristor are
firstly developed and applied. It can be convinced from the results that the established
M-GD generally outperforms the classical algorithms and M-M. It is expected to expand
a brand-new field for the application of memristor. The main contribution of this paper is
that we make the first attempt to apply the memristor to construct the neural networks.
Compared with the traditional neural networks, the proposed neural networks are built
relying on the memristor. It is easy to develop the corresponding hardware circuits. The
input data is represented by the voltage signal. By changing the voltage values at both
end of the memristor, the weights and biases can be directly updated, so that the training
and testing of the neural network can be realized. The whole process does not need com-
puter simulation which makes it possible to break through the development bottleneck
of traditional neural networks.

A brief outline of this paper is arranged as follows. Section 2 gives an introduction to
memristor. In Section 3, the classical BP neural network is briefly presented first, then two
kinds of memristor-based neural network are introduced. In Section 4, the memristor-
based neural networks are utilized to predict the HPC strength in the first example, the
fitting and prediction effect of the proposed models, and the results of comparisons with
different algorithms are displayed. Furthermore, the another example further verifies
the effectiveness and practicality of the M-GD. Finally, some conclusions are drawn in
Section 5.

2 Memristor

A simplified device of the memristor [29, 30] is considered and the diagram with a sim-
plified equivalent circuit is shown in Fig. 1. Strukov et al. [29] developed the physical
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model of the memristor as follows:
v(t)=M(t)i(t),
M(t)=RONx(t)+ROFF [1−x(t)],
dx(t)

dt
= ki(t),

(2.1)

where M(t) is the effective resistance of memristor, i(t) the input current, v(t) the output
voltage, k=µvRON/D the memristor constant and µv = 10−14m2 ·s−1 ·V−1, x(t) the ratio
between the length of doped region to the total length of the memristor, i.e., x(t)=w/D
in Fig. 1(a). When w= D, the resistance of the memristor achieves the minimum value
RON . When w=0, the resistance of the memristor reaches the maximum value ROFF.

(a) (b) (c)

Figure 1: Diagram with a simplified equivalent circuit.

According to the Bernoulli dynamics analysis, the flux control model of memristor
can be obtained. The relationship between the charge and the magnetic flux is as fol-
lows [30]:

q(t)=



ϕ(t)−c1

ROFF
, ϕ(t)< c3,√

2hϕ(t)+M2(0)−M(0)
k

, c3≤ ϕ(t)< c4,

ϕ(t)−c2

RON
, ϕ(t)≥ c4,

(2.2)

in which M(0) represents the initial resistance of the memristor, ϕ(t) stands for the mag-
netic flux, q(t)=

∫ t
−∞ i(t)dt is the charge, and

h=(RON−ROFF)µvRON/D2, (2.3a)

c1=−[ROFF−M(0)]2/(2h), (2.3b)

c2=−[RON−M(0)]2/(2h), (2.3c)

c3=
[
R2

OFF−M2(0)
]
/(2h), (2.3d)

c4=
[
R2

ON−M2(0)
]
/(2h). (2.3e)
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Figure 2: A representative curve for the relationship between the derivative of conductance and the voltage of
the memristor.

Inserting Eq. (2.2) into the second and third equations in Eq. (2.1), the conductance of
memristor can be obtained as

G(t)=
1

M(t)
=



1
ROFF

, ϕ(t)< c3,

1√
2hϕ(t)+M2(0)

, c3≤ ϕ(t)< c4,

1
RON

, ϕ(t)≥ c4.

(2.4)

Then, we can obtain the following equation:

dG(t)
dt

=


[
2hϕ(t)+M2(0)

]−3/2×(−h)× dϕ(t)
dt

, c3≤ ϕ(t)< c4,

0, else.
(2.5)

By Eq. (2.5), we can easily plot a representative curve for the relationship between the
derivative of conductance of the memristor and the voltage at both ends of the memristor,
as shown in Fig. 2.

It can be found that the curve is “sinh-like”, so HP Laboratory proposed a model of
voltage-controlled memristor [28] as follows:

dG(t)
dt

=Asinh(BV), (2.6)

in which A and B are the constants to be determined.
It can be observed from Fig. 2 that this kind of voltage-controlled memristor describes

the relationship between voltage and conductance. It is noted that small voltages trigger
very little change in device conductance, but when the memristor voltage reaches a cer-
tain value, it will induce drastic changes. Due to this important feature of memristor,
this model connects with the BP neural network, and memristor-based neural network
models can be constructed.
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3 Memristor-based neural network

3.1 Classical BP neural network

In this section, the BP neural network will be briefly introduced firstly. It should be
mentioned that the main factors affecting the strength of HPC are water to binder ratio
(W/B, %), water content (W, kg/m3), fine aggregate ratio (s/a, %), fly ash replacement
ratio (FAR, %), air-entraining agent content (AE, kg/m3), and superplasticizer content
(SP, kg/m3). The six factors are selected as input variables and the compressive strength
value as output variables. Therefore, we introduce a BP neural network with 6 inputs
and 1 output directly. The classical BP neural network has the structure as described in
Fig. 3.
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Figure 3: The structure of BP neural network.

It can be seen that three layers are contained in this BP neural network, i.e., input
layer, hidden layer, and output layer. The basic idea of BP neural network is the method
of mean square error, which can be employed to modify the connection weight of net-
work when combined with gradient descent method (GD) [31]. The modification of
weight aims to minimize the final output error or to achieve the desired value. The learn-
ing algorithm is an extremely important part of BP neural network. In order to improve
the performance of neural network, many other advanced algorithms have been consec-
utively proposed, such as the gradient descent with momentum (GDM) [32], the gradient
descent with adaptive learning rate (GDA) [33], the elastic gradient descent (EGD) [34],
and the Levenberg-Marquardt algorithm (L-M) [35]. These five classical algorithms are
also utilized to compare with the proposed model in this study.

3.2 Memristor-based neural network

3.2.1 M-M neural network

Unlike the traditional neural networks, we regard the memristor as the learning algo-
rithms in the newly developed networks. The function tanh is employed as an activation
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(5) Weight updating rules 
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\[\Delta G=A\sinh (BV)\times \Delta t.\]                       (11) 
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\[\begin{align} 
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Figure 4: M-M neural network architecture.

function. We adopt an M-M network structure, as depicted in Fig. 4. Assuming that the
input variable is xj, j = 1,··· ,m and the output value is y, the specific algorithm of the
M-M neural network is as follows:
(1) Input layer:

Inpj = xj, (3.1)

(2) Input of hidden layer:

HidI
i =

m

∑
j=1

w(1)
ij Inpj+b(1)i , (3.2)

w(1)
ij and b(1)i are the weights and biases between the input layer and the hidden layer,

respectively.
(3) Output of hidden layer:

HidO
i = tanh(HidI

i ), (3.3)

(4) Output layer:

y=
n

∑
i=1

w(2)
i HidO

i +b(2), (3.4)

in which n is the number of neurons in the hidden layer, w(2)
i and b(2) are the weights and

biases between the hidden layer and the output layer, respectively.
(5) Weight updating rules: According to Eq. (2.6), for a very small ∆t, dG can be approxi-
mately replaced by ∆G. Then, we can write

∆G=Asinh(BV)×∆t. (3.5)
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Corresponding the conductance of the memristor to the weight of the neural network,
we obtain

∆w(1)
k =Asinh[B(Mk−yk)]×α(1)× Inp, (3.6a)

w(1)
k (i+1)=w(1)

k (i)+∆w(1)
k (i), (3.6b)

and

∆w(2)
k =Asinh[B(Mk−yk)]×α(2)×HidO, (3.7a)

w(2)
k (i+1)=w(2)

k (i)+∆w(2)
k (i), (3.7b)

in which Mk is the kth measured value, yk the kth value obtained by M-M neural network,
α(1) the learning rate between the input layer and the hidden layer, α(2) the learning rate
between the hidden layer and the output layer.
(6) Bias updating rules: Similar to (5), the bias updating rules can be written as follows:

∆b(1)k =Asinh[B(Mk−yk)]×α(1), (3.8a)

b(1)k (i+1)=b(1)k (i)+∆b(1)k (i). (3.8b)

and

∆b(2)k =Asinh[B(Mk−yk)]×α(2), (3.9a)

b(2)k (i+1)=b(2)k (i)+∆b(2)k (i). (3.9b)

3.2.2 M-GD neural network

Unlike the construction of the M-M neural network, we adopt a combination of classical
learning algorithm and memristor in this network, as shown in Fig. 5. The GD is used for
learning and updating, the memristor is also arranged in the network, and the activation
function is tanh. Assuming that the input variable is xj, j=1,··· ,m, and the output value
is y, the procedures of the M-GD neural network are as follows:
(1) Input layer:

Inpj = xj, (3.10)

(2) Input of the hidden layer:

HidI
i =

m

∑
j=1

w(1)
ij Inpj+b(1)i , (3.11)

(3) Output of the hidden layer:

HidO
i = tanh(HidI

i ), (3.12)
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(4) Output layer:

y=
n

∑
i=1

w(2)
i HidO

i +b(2), (3.13)

(5) Updating rules between the input layer and hidden layer: The GD is employed for
network learning, and optimize weight and bias.
(6) Updating rules between the hidden layer and output layer: The memristor is consid-
ered and the rules are the same as that in Eqs. (3.7) and (3.9).
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4. Memristor-based neural network for predicting the HPC strength 

Figure 5: M-GD neural network architecture.

4 Memristor-based neural network for predicting the HPC
strength

4.1 Example 1

4.1.1 The dataset

The experimental dataset was obtained from [16,36,37]. In this example, a total of 104 sets
of the data were invoked, and the data is summarized in detail in “Appendix A”. To train
the established neural network method, the learning results need to be tested. To this
end, the 12 sets (Numbers 2, 10, 17, 30, 40, 48, 55, 63, 75, 83, 93, and 101. For convenience,
we numbered them 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 in turn) of the data were selected as
the prediction samples, and the remaining 92 sets were used as training samples.

4.1.2 Tuning parameters

Parameters of classical BP neural network. In our analysis, the learning rate is as-
sumed to be 0.05, and the activation functions are tansig and purelin. To determine the
number of neurons, we tested the performance of the classical BP neural network un-
der different numbers of neurons in the hidden layer shown in Table 1. Considering the
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Table 1: Comparison of BP neural networks under different numbers of neurons.

Number of neurons 4 5 6 7 8 9 10 11 12
MSE of training results 0.6017 0.4297 0.3310 0.3224 0.3180 0.3109 0.3096 0.3047 0.3096

MSE of predictive results 3.3856 3.5315 2.9261 2.7787 2.0828 2.3130 2.4094 2.7457 2.8962

trends of both training and prediction errors, the number of neurons in the hidden layer
is set to 8 for the BP neural network in the following study.

Parameters of M-M neural network and M-GD neural network. In our methods, the
learning rate between the input layer and the hidden layer is assumed to be 0.008, and the
learning rate between the hidden layer and output layer is 0.007. The activation function
is tanh. After testing, the number of neurons in the hidden layer in the M-M neural
network can be set to be very small, which is set to 3. However, the number of neurons
in the hidden layer in the M-GD neural network needs to be larger, which is fixed at 15.

4.1.3 Performance measurement

To measure, compare, and evaluate the training and predictive results of the devel-
oped methods comprehensively, this study employs the following six performance-
measurement equations:
Absolute error:

AE= |Mi−Pi|, (4.1)

Relative error:

RE=
|Mi−Pi|

Mi
×100, (4.2)

Mean absolute error:

MAE=
1
N

N

∑
i=1
|Mi−Pi|, (4.3)

Mean relative error:

MRE=
1
N

N

∑
i=1

(∣∣∣∣Mi−Pi

Mi

∣∣∣∣×100
)

, (4.4)

Mean square error:

MSE=
1
N

N

∑
i=1

(Mi−Pi)
2, (4.5)
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Correlation coefficient:

R=

N
∑

i=1
(Mi−M̄i)(Pi− P̄i)√

N
∑

i=1
(Mi−M̄i)

2 N
∑

i=1
(Pi− P̄i)

2

, (4.6)

where N is the number of data samples, Mi the measured value, and Pi the predictive
value, M̄i the mean measured value, and P̄i the mean predictive value.

4.1.4 Results and discussion

Results of M-M neural network. The training process of the M-M neural network is
displayed in Fig. 6, in which the abscissa indicates the number of iterations in the train-
ing process, and the ordinate represents the MSE of the training results. It can be ob-
served that the proposed method has a quite high convergence speed. The fitting effect
of training samples is shown in Fig. 7. As can be seen from Fig. 7, the fitting results are
not very ideal, and many data points cannot be accurately caught, but the overall trend
of the fitting curve is consistent with the measured strengths.

The trained M-M neural network can be used for strength prediction. The 12 sets of
prediction samples prepared in Section 4.1 are tested on the trained network, and the
prediction effect of the samples of the M-M is displayed in Fig. 8. It can be found that
the consistency between the predictive and measured strength values of the proposed
network is not high, which indicates that this network cannot estimate the compressive
strength of the samples very accurately.

The absolute errors and relative errors of the predictive value obtained by the M-M
are displayed in Table 2. As reflected in Table 2, except for the first set of samples, the
absolute error of the prediction samples reaches 4.92MPa, the maximum absolute error
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Figure 8: The prediction effect for the number of prediction samples of the M-M neural network.

of the other 11 sets prediction samples is 3.69MPa, and the maximum relative error is
7.69%. The requirements of construction engineering are [38],

Maximum absolute error≤4MPa,

and

Maximum relative error≤10%.

Based on the above prediction results, the strength prediction errors of the M-M neural
network can roughly satisfy the requirements in construction engineering.

In order to improve the accuracy of the proposed M-M neural network, we use 8
number of neurons in the hidden layer in the M-M neural network. Fig. 9 displays the
fitting effect of training samples. Compared with the Fig. 7, we can see that much more
number of neurons used in the hidden layer will improve the accuracy significantly. Fur-
thermore, the prediction effect of the samples of the M-M is displayed in Fig. 10. It can be
found that the consistency between the predictive and measured strength values of the
proposed network is high compared with Fig. 8.
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Based on the above prediction results, the strength prediction errors of the M-M neural 

network can roughly satisfy the requirements in construction engineering. 

 
Table 2 Performance measurement results of the M-M. 

Number 
Measured value 

(MPa) 

Predictive value 

(MPa) 

Absolute error 

(MPa) 

Relative error 

(%) 

1 74 69.08 4.92 6.65 

2 66 65.11 0.89 1.35 

3 61 63.71 2.71 4.44 

4 63 61.06 1.94 3.08 

5 58 55.92 2.08 3.59 

6 48 51.69 3.69 7.69 

7 50 52.40 2.40 4.80 

8 46 46.64 0.64 1.39 

9 44 42.30 1.70 3.86 

10 43 46.25 3.25 7.56 

11 42 40.80 1.20 2.86 

12 41 37.86 3.14 7.66 

 

 

Fig. 9. The fitting effect for the number of prediction samples of the M-M neural network with 8 neurons in 

the hidden layer. Figure 9: The fitting effect for the number of prediction samples of the M-M neural network with 8 neurons in
the hidden layer.
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Fig. 10. The prediction effect for the number of prediction samples of the M-M neural network with 8 
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of the training results. It is evident that the convergence rate of the proposed scheme is fast. 

The fitting effects of training samples and the prediction effect of prediction samples are 

presented in Figs. 12 and 13, respectively. As can be observed from Fig. 12, the fitting results 

are quite ideal, only a few data points cannot be accurately fitted, and the general trend of the 

fitting curve is consistent with the measured strength. It can be seen from Fig. 13 that the 

prediction curve is very close to the measured strength, which shows that the M-GD neural 

network has the ability to predict the strength of prediction samples accurately, and the 

predictive strength of the network is in good agreement with the measured strength. Fig. 14 

presents the scatter diagram of the measured and predictive value, in which the regression 

Figure 10: The prediction effect for the number of prediction samples of the M-M neural network with 8 neurons
in the hidden layer.

Results of M-GD neural network. For the M-GD neural network, the training process
is given in Fig. 11, the abscissa in it indicates the number of iterations in the training
process, and the ordinate represents the MSE of the training results. It is evident that the
convergence rate of the proposed scheme is fast. The fitting effects of training samples
and the prediction effect of prediction samples are presented in Figs. 12 and 13, respec-
tively. As can be observed from Fig. 12, the fitting results are quite ideal, only a few data
points cannot be accurately fitted, and the general trend of the fitting curve is consistent
with the measured strength. It can be seen from Fig. 13 that the prediction curve is very
close to the measured strength, which shows that the M-GD neural network has the abil-
ity to predict the strength of prediction samples accurately, and the predictive strength of
the network is in good agreement with the measured strength. Fig. 14 presents the scatter
diagram of the measured and predictive value, in which the regression coefficient (RC)
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coefficient (RC) is 0.9828. It shows that the predictive strength and measured strength have a 

very high fitting precision. 

 

 

Fig. 11. The training error curve of the M-GD neural network. 

 

 

Fig. 12. The fitting effect of training samples of the M-GD neural network. 
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Fig. 12. The fitting effect of training samples of the M-GD neural network. 

 
Figure 12: The fitting effect of training samples of the M-GD neural network.

is 0.9828. It shows that the predictive strength and measured strength have a very high
fitting precision.

4.1.5 Comparison

This section presents the results of comparing the proposed models M-M and M-GD to
other learning algorithms including the well-studied GD, GDM, GDA, EGD and L-M.
Table 3 presents the comparison results obtained by various methods after setting appro-
priate parameters for each of them. It is easy to see that the MSEs of GD are 1.1136 and
3.6075, respectively, which perform poorest in the classical algorithms. However, when
the memristor is combined, the established M-GD generally outperforms the classical al-
gorithms and M-M. Especially for predictive results, the MSEs obtained by the M-GD are
far less than those obtained by other algorithms.
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Fig. 13. The prediction effect of prediction samples of the M-GD neural network. 

 

 
Fig. 14. Scatter diagram of the measured and predictive values. 
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It can also be observed from Table 3 that the L-M has obvious advantages over all
classical algorithms. In order to further explore the accuracy of the results from the pro-
posed M-M and M-GD, the absolute errors and relative errors of 12 prediction samples
are presented in Figs 15 and 16 and comparison is made with those from L-M. As shown
in Figs. 15 and 16, the M-M undoubtedly enforces poorly compared with the L-M and
M-GD. The curves of the relative and absolute errors obtained by the M-GD are almost
below than those obtained by L-M, which means that the M-GD outperforms the L-M in
prediction.

In order to clearly illustrate the superiority of the proposed model in prediction, a
detailed comparison between the L-M and M-GD is presented in Table 4. In the table,
the minimum absolute error, maximum absolute error, MAE, minimum relative error,
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Table 3 Performance measurement results of various algorithms. 
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 Figure 15: Comparison of absolute errors obtained by the L-M, M-M and M-GD.

maximum relative error, MRE, R and RC of the predictive values obtained by the L-
M and M-GD are listed. Among all the error results achieved by L-M, only minimum
absolute error and relative error are smaller than those obtained from the M-GD, which
shows that the M-GD performs better than L-M in terms of accuracy. Moreover, the R
and RC obtained from the L-M are smaller than those from the M-GD, which illustrates
that the correlation achieved by M-GD is stronger.

Table 2: Performance measurement results of the M-M.

Number Measured value (MPa) Predictive value (MPa) Absolute error (MPa) Relative error (%)
1 74 69.08 4.92 6.65
2 66 65.11 0.89 1.35
3 61 63.71 2.71 4.44
4 63 61.06 1.94 3.08
5 58 55.92 2.08 3.59
6 48 51.69 3.69 7.69
7 50 52.40 2.40 4.80
8 46 46.64 0.64 1.39
9 44 42.30 1.70 3.86

10 43 46.25 3.25 7.56
11 42 40.80 1.20 2.86
12 41 37.86 3.14 7.66

Table 3: Performance measurement results of various algorithms.

Algorithm GD GDM GDA EGD L-M M-M M-GD
MSE of training results 1.1136 0.9543 0.7058 0.3240 0.2997 2.8523 0.4900

MSE of predictive results 3.6075 3.1108 2.5546 2.2321 2.1786 6.2565 0.8743

Table 4: Performance measurement results of L-M and M-GD.

Algorithm Minimum absolute error (MPa) Maximum absolute error (MPa) MAE (MPa) Minimum relative error (%) Maximum relative error (%) MRE (%) R RC
L-M 0.04 2.38 1.10 0.05 6.24 2.22 0.9917 0.9600

M-GD 0.24 1.69 0.82 0.43 3.93 1.64 0.9962 0.9828
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Fig. 16. Comparison of relative errors obtained by the L-M, M-M and M-GD. 
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Figure 16: Comparison of relative errors obtained by the L-M, M-M and M-GD.

4.2 Example 2

4.2.1 The dataset

To further verify the effectiveness and practicality of the M-GD neural network, it was
examined by another dataset containing a relatively small amount of data. The experi-
mental dataset was mined from [39]. In this example, the eight factors, i.e., type of cement
(TC), fine sand (FS, %), coarse sand (CS, %), fine aggregate (FA, %), coarse aggregate (CA,
%), cement weight (CW, da Nm−3), w/c ratio (w/c) and superplasticizer (SP’, da Nm−3),
are employed as input variables. A total of 31 sets of the data attached in “Appendix B”
were used. The 23 sets (Numbers 1-23) of the data were selected as the training samples,
and the other 8 sets (Numbers 24-31) were employed as testing samples.

4.2.2 Results of M-GD neural network

The relevant tuning parameters are the same as those in the M-GD neural network em-
ployed in the previous example. The fitting effects of training samples and the prediction
effect of testing samples are described in Figs. 17 and 18, respectively. It is noticeable that
the general trend of the fitting curve is consistent with the measured strength. Fig. 18
demonstrates that the predictive strength obtained by the M-GD is in good agreement
with the measured strength. In addition, the maximum and minimum relative errors,
and mean relative error of training process are 6.65%, 0.023% and 2.68% respectively. The
maximum and minimum relative errors, and mean relative error of testing process are
5.59%, 1.34% and 3.15%, respectively. It can be concluded that the M-GD neural net-
work is able to predict the concrete strength accurately, and thus can be considered as a
promising technique in this regard.
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Fig. 17. The fitting effect of training samples of the M-GD neural network. 

 

 
Fig. 18. The prediction effect of testing samples of the M-GD neural network. 

 

4.2.3. Extensive model validation 

 

To avoid contingency, the training samples and testing samples were randomly assigned 

and grouped another six times. The details of the six groups are given as follows: 

G1: 4 sets of testing samples are shown in “Appendix C1”, the remaining 27 sets were 

training sample. 

Figure 17: The fitting effect of training samples of the M-GD neural network.
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Fig. 18. The prediction effect of testing samples of the M-GD neural network. 
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Figure 18: The prediction effect of testing samples of the M-GD neural network.

4.2.3 Extensive model validation

To avoid contingency, the training samples and testing samples were randomly assigned
and grouped another six times. The details of the six groups are given as follows:

G1: 4 sets of testing samples are shown in “Appendix C1”, the remaining 27 sets were
training sample.

G2: 6 sets of testing samples are given in “Appendix C2”, the remaining 25 sets were
training sample.

G3: 8 sets of testing samples are shown in “Appendix C3”, the remaining 23 sets were
training sample.

G4: 10 sets of testing samples are given in “Appendix C4”, the remaining 21 sets were
training sample.
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G5: 12 sets of testing samples are shown in “Appendix C5”, the remaining 19 sets were
training sample.

G6: 14 sets of testing samples are given in “Appendix C6”, the remaining 17 sets were
training sample.

These groups were trained and tested under the same parameters given in the Section
4.2.2, and the errors obtained by the M-GD for six data groups were presented in Table
5. Obviously the training and testing errors are quite small, which fully confirms the
effectiveness and practicality of the proposed method.

Table 5: Errors obtained by the M-GD for six data groups.

Training error (%) Testing error (%)
Error Maximum Minimum MRE Maximum Minimum MRErelative error relative error relative error relative error

G1 6.43 0.45 3.09 3.27 0.55 1.58
G2 7.84 0.04 2.82 6.70 1.35 3.17
G3 7.66 0.18 2.94 6.97 1.28 3.34
G4 6.76 0.33 3.12 6.52 0.32 3.41
G5 5.94 0.29 2.28 9.04 0.76 4.58
G6 5.37 0.03 1.77 9.31 0.58 4.78

5 Conclusions

Based on the classical BP neural network, the M-M neural network and the M-GD neural
network are proposed. The presented models are utilized to forecast the compressive
strength of HPC, and the fitting and prediction effect of the developed models are dis-
played. Moreover, the proposed methods are also evaluated from the comparisons with
the classical learning algorithms including the GD, GDM, GDA, EGD and L-M. The main
conclusions are obtained as follows:

1) The M-GD neural network is newly proposed. It generally outperforms the classical
algorithms and M-M, and can be regarded as a promising forecasting tool in the
field of civil engineering.

2) It is the first attempt to apply the M-M neural network in predicting the HPC
strength. This network has a relatively high convergence speed, and the strength
prediction errors of the M-M neural network can roughly meet the demands in con-
struction engineering.

3) This study presents a way to construct the hardware circuit of the neural network
with the memristor, and the established neural networks can deal with huge data
prediction efficiently in principle.
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4) Considering that it is the first attempt to employ memristor in civil engineering, it
is desired that the memristor is extended to other fields such as engineering me-
chanics, environmental engineering, and aerospace.

It should be noted here that the proposed methods in this paper are applied in a
specific case of study and show some advantages. The performance of the proposed
method should be widely studied before the real applications to other fields.

Appendix A

Table 6: Experimental dataset of Example 1.

Number fc(MPa) W/B(%) W
(
kg/m3) s/a(%) FAR(%) AE

(
kg/m3) SP

(
kg/m3)

1 74 30 160 48 10 0.069 8.00
2 74 30 160 48 20 0.069 8.00
3 71 30 160 46 0 0.069 8.00
4 72 30 160 45 10 0.069 8.00
5 69 30 160 44 20 0.069 8.00
6 69 30 160 42 0 0.069 8.00
7 68 30 160 42 10 0.069 8.00
8 65 30 160 41 20 0.069 8.00
9 66 30 170 47 0 0.074 8.50

10 66 30 170 46 20 0.074 8.50
11 65 30 170 44 0 0.074 8.50
12 65 30 170 43 10 0.074 8.50
13 63 30 170 42 20 0.074 8.50
14 64 30 170 41 0 0.074 8.50
15 63 30 170 40 10 0.074 8.50
16 63 30 170 39 20 0.074 8.50
17 61 30 180 45 0 0.078 7.50
18 62 30 180 44 10 0.078 7.50
19 62 30 180 44 20 0.078 7.50
20 62 30 180 42 0 0.078 7.50
21 61 30 180 41 10 0.078 7.50
22 58 30 180 40 20 0.078 7.50
23 61 30 180 38 0 0.078 7.50
24 61 30 180 38 10 0.078 7.50
25 61 30 180 37 20 0.078 7.50
26 63 35 160 51 0 0.059 5.71
27 63 35 160 50 10 0.059 5.71
28 62 35 160 50 20 0.059 5.71
29 63 35 160 48 0 0.059 5.71
30 63 35 160 47 10 0.059 5.71
31 59 35 160 47 20 0.059 5.71
32 63 35 160 45 0 0.059 5.71
33 62 35 160 44 10 0.059 5.71
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Number fc(MPa) W/B(%) W
(
kg/m3) s/a(%) FAR(%) AE

(
kg/m3) SP

(
kg/m3)

34 59 35 160 43 20 0.059 5.71
35 60 35 170 49 0 0.063 4.86
36 58 35 170 49 10 0.063 4.86
37 56 35 170 48 20 0.063 4.86
38 59 35 170 46 0 0.063 4.86
39 58 35 170 45 10 0.063 4.86
40 58 35 170 45 20 0.063 4.86
41 57 35 170 43 0 0.063 4.86
42 55 35 170 42 20 0.063 4.86
43 55 35 180 48 0 0.067 3.86
44 54 35 180 47 10 0.067 3.86
45 52 35 180 46 20 0.067 3.86
46 56 35 180 44 0 0.067 3.86
47 51 35 180 44 10 0.067 3.86
48 48 35 180 43 20 0.067 3.86
49 53 35 180 41 0 0.067 3.86
50 46 35 180 40 10 0.067 5.14
51 48 35 180 40 20 0.067 5.14
52 51 40 160 52 0 0.040 4.00
53 49 40 160 52 10 0.040 2.57
54 49 40 160 51 20 0.040 4.00
55 50 40 160 49 0 0.040 4.00
56 49 40 160 49 10 0.040 4.00
57 49 40 160 48 20 0.040 4.00
58 50 40 160 46 0 0.040 4.00
59 49 40 160 46 10 0.040 4.00
60 47 40 160 45 20 0.040 4.00
61 49 40 170 51 0 0.043 2.13
62 48 40 170 50 10 0.043 2.13
63 46 40 170 50 20 0.043 2.13
64 47 40 170 48 0 0.043 2.13
65 47 40 170 47 10 0.043 2.13
66 46 40 170 47 20 0.043 2.13
67 47 40 170 45 0 0.043 2.13
68 46 40 170 44 10 0.043 2.13
69 44 40 170 44 20 0.043 2.13
70 45 40 180 49 0 0.045 2
71 44 40 180 49 10 0.045 2.25
72 43 40 180 48 20 0.045 2.25
73 45 40 180 46 0 0.045 2.25
74 44 40 180 46 10 0.045 2.25
75 44 40 180 45 20 0.045 2.25
76 44 40 180 43 0 0.045 2.25
77 42 40 180 42 10 0.045 2.25
78 43 40 180 42 20 0.045 2.25
79 47 45 160 53 0 0.036 3.56
80 46 45 160 53 10 0.036 3.56
81 45 45 160 52 20 0.036 3.56
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Number fc(MPa) W/B(%) W
(
kg/m3) s/a(%) FAR(%) AE

(
kg/m3) SP

(
kg/m3)

82 45 45 160 50 0 0.036 3.56
83 43 45 160 50 10 0.036 3.56
84 45 45 160 49 20 0.036 3.56
85 44 45 160 47 0 0.036 3.56
86 43 45 160 47 10 0.036 3.56
87 44 45 160 46 20 0.036 3.56
88 46 45 170 52 0 0.038 1.89
89 42 45 170 51 10 0.038 1.89
90 42 45 170 51 20 0.038 1.89
91 43 45 170 49 0 0.038 1.89
92 42 45 170 48 10 0.038 1.89
93 42 45 170 48 20 0.038 1.89
94 43 45 170 46 0 0.038 1.89
95 42 45 170 45 10 0.038 1.89
96 42 45 170 45 20 0.038 1.89
97 42 45 180 51 0 0.040 2.00
98 42 45 180 50 10 0.040 2.00
99 41 45 180 50 20 0.040 2.00

100 42 45 180 47 0 0.040 2.00
101 41 45 180 47 20 0.040 2.00
102 43 45 180 44 0 0.040 2.00
103 40 45 180 44 10 0.040 2.00
104 38 45 180 43 20 0.040 2.00

fc: compressive strength (MPa).

Appendix B

Table 7: Experimental dataset of Example 2.

Number f ′c TC FS (%) CS (%) FA (%) CA (%) CW (da Nm−3) w/c SP’ (da Nm−3)
1 281 325 19 27 28 26 280 0.55 0
2 314 325 15 28 30 27 310 0.55 1.1
3 337 325 15 28 30 27 350 0.54 1.1
4 355 325 15 28 30 27 350 0.5 1.1
5 336 325 15 28 30 27 350 0.52 1.1
6 349 325 15 28 30 27 350 0.53 1.1
7 390 325 15 28 30 27 350 0.5 4.1
8 522 425 15 28 30 27 370 0.48 4.4
9 495 425 15 28 30 27 370 0.5 4.4

10 530 425 15 28 30 27 370 0.46 4.4
11 438 425 15 28 30 27 370 0.52 4.4
12 434 425 15 28 30 27 370 0.51 1.3
13 430 425 15 28 30 27 370 0.48 1.3
14 470 425 15 28 30 27 370 0.49 1.3
15 450 425 15 28 30 27 370 0.52 1.3
16 353 325 15 28 30 27 370 0.54 1.3
17 401 325 15 28 30 27 370 0.51 4.4
18 285 325 19 27 28 26 280 0.55 0



L. Zhao, W. Zhou, X. Li, S. Zhang and Y. Zhang / Adv. Appl. Math. Mech., xx (2024), pp. 1-27 23

Number f ′c TC FS (%) CS (%) FA (%) CA (%) CW (da Nm−3) w/c SP’ (da Nm−3)
19 290 325 15 28 30 27 310 0.55 1.1
20 320 325 15 28 30 27 350 0.5 1.1
21 335 325 15 28 30 27 350 0.52 1.1
22 440 325 15 28 30 27 350 0.5 4.1
23 440 325 15 28 30 27 370 0.51 4.4
24 360 325 15 28 30 27 350 0.54 4.1
25 510 425 15 28 30 27 370 0.5 4.4
26 535 425 15 28 30 27 370 0.48 4.4
27 420 425 15 28 30 27 370 0.52 4.4
28 430 425 15 28 30 27 370 0.51 1.3
29 460 425 15 28 30 27 370 0.51 1.3
30 350 325 15 28 30 27 370 0.54 1.3
31 400 325 15 28 30 27 370 0.52 4.4

f ′c : concrete strength.

Appendix C1

Table 8: Testing samples in Group 1.

Number f ′c TC FS (%) CS (%) FA (%) CA (%) CW (da Nm−3) w/c SP’ (da Nm−3)
5 336 325 15 28 30 27 350 0.52 1.1

11 438 425 15 28 30 27 370 0.52 4.4
21 335 325 15 28 30 27 350 0.52 1.1
30 350 325 15 28 30 27 370 0.54 1.3

f ′c : concrete strength.

Appendix C2

Table 9: Testing samples in Group 2.

Number f ′c TC FS (%) CS (%) FA (%) CA (%) CW (da Nm−3) w/c SP’ (da Nm−3)
5 336 325 15 28 30 27 350 0.52 1.1
6 349 325 15 28 30 27 350 0.53 1.1

11 438 425 15 28 30 27 370 0.52 4.4
15 450 425 15 28 30 27 370 0.52 1.3
21 335 325 15 28 30 27 350 0.52 1.1
30 350 325 15 28 30 27 370 0.54 1.3

f ′c : concrete strength.

Appendix C3
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Table 10: Testing samples in Group 3.

Number f ′c TC FS (%) CS (%) FA (%) CA (%) CW (da Nm−3) w/c SP’ (da Nm−3)
5 336 325 15 28 30 27 350 0.52 1.1
6 349 325 15 28 30 27 350 0.53 1.1

11 438 425 15 28 30 27 370 0.52 4.4
15 450 425 15 28 30 27 370 0.52 1.3
21 335 325 15 28 30 27 350 0.52 1.1
23 440 325 15 28 30 27 370 0.51 4.4
27 420 425 15 28 30 27 370 0.52 4.4
30 350 325 15 28 30 27 370 0.54 1.3

f ′c : concrete strength.

Appendix C4

Table 11: Testing samples in Group 4.

Number f ′c TC FS (%) CS (%) FA (%) CA (%) CW (da Nm−3) w/c SP’ (da Nm−3)
1 281 325 19 27 28 26 280 0.55 0
3 337 325 15 28 30 27 350 0.54 1.1
7 390 325 15 28 30 27 350 0.5 4.1
8 522 425 15 28 30 27 370 0.48 4.4

11 438 425 15 28 30 27 370 0.52 4.4
13 430 425 15 28 30 27 370 0.48 1.3
16 353 325 15 28 30 27 370 0.54 1.3
21 335 325 15 28 30 27 350 0.52 1.1
24 360 325 15 28 30 27 350 0.54 4.1
30 350 325 15 28 30 27 370 0.54 1.3

f ′c : concrete strength.

Appendix C5

Table 12: Testing samples in Group 5.

Number f ′c TC FS (%) CS (%) FA (%) CA (%) CW (da Nm−3) w/c SP’ (da Nm−3)
2 314 325 15 28 30 27 310 0.55 1.1
5 336 325 15 28 30 27 350 0.52 1.1
7 390 325 15 28 30 27 350 0.5 4.1
8 522 425 15 28 30 27 370 0.48 4.4
9 495 425 15 28 30 27 370 0.5 4.4

11 438 425 15 28 30 27 370 0.52 4.4
14 470 425 15 28 30 27 370 0.49 1.3
16 353 325 15 28 30 27 370 0.54 1.3
22 440 325 15 28 30 27 350 0.5 4.1
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Number f ′c TC FS (%) CS (%) FA (%) CA (%) CW (da Nm−3) w/c SP’ (da Nm−3)
26 535 425 15 28 30 27 370 0.48 4.4
29 460 425 15 28 30 27 370 0.51 1.3
30 350 325 15 28 30 27 370 0.54 1.3

f ′c : concrete strength.

Appendix C6

Table 13: Testing samples in Group 6.

Number f ′c TC FS (%) CS (%) FA (%) CA (%) CW (da Nm−3) w/c SP’ (da Nm−3)
1 281 325 19 27 28 26 280 0.55 0
2 314 325 15 28 30 27 310 0.55 1.1
6 349 325 15 28 30 27 350 0.53 1.1
7 390 325 15 28 30 27 350 0.5 4.1
9 495 425 15 28 30 27 370 0.5 4.4

11 438 425 15 28 30 27 370 0.52 4.4
12 434 425 15 28 30 27 370 0.51 1.3
13 430 425 15 28 30 27 370 0.48 1.3
16 353 325 15 28 30 27 370 0.54 1.3
24 360 325 15 28 30 27 350 0.54 4.1
27 420 425 15 28 30 27 370 0.52 4.4
29 460 425 15 28 30 27 370 0.51 1.3
30 350 325 15 28 30 27 370 0.54 1.3
31 400 325 15 28 30 27 370 0.52 4.4

f ′c : concrete strength.
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