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Abstract. Numerical approximation of the Ericksen-Leslie system with variable den-
sity is considered in this paper. The spherical constraint condition of the orientation
field is preserved by using polar coordinates to reformulate the system. The equiva-
lent new system is computationally cheaper because the vector function of the orien-
tation field is replaced by a scalar function. An iteration penalty method is applied
to construct a numerical scheme so that stability is improved. We first prove that the
scheme is unique solvable and unconditionally stable in energy. Then we show that
this scheme is of first-order convergence rate by rigorous error estimation. Finally,
some numerical simulations are performed to illustrate the accuracy and effectiveness
of the scheme.
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1 Introduction

In recent years, more and more scholars are interested in the theory of liquid crystals.
Liquid crystals are materials that show the intermediate phase between solid and liquid.
This implies that liquid crystals conjoin the characteristics of both solids and isotropic
liquids. Nematic is the simplest phase of liquid crystals. In this case, molecules are
provided with ordered orientation, but disordered in position configuration. In the 1960s,
Ericksen [9] and Leslie [18] first introduced the Ericksen-Leslie system, which models
the hydrodynamics of nematic liquid crystals. Under the influence of flow velocity and
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microscopic orientation configurations, this system describes the macroscopic temporal
evolution of liquid crystal materials.

Lin [21] proposed a simplified version because the original Ericksen-Leslie system is
too complicated. Major mathematical difficulties remain, although the simplified version
ignores the Leslie tension. This system consists of a Navier-Stokes equation [29] coupled
with the extra term ∇·(∇d�∇d) and a harmonic map heat flow with the convection
term (u·∇)d [22], read as:

ut+u·∇u+∇P−µ∆u+∇·(∇d�∇d)=0, (1.1a)

dt+(u·∇)d−∆d−|∇d|2d=0, (1.1b)
|d|=1, (1.1c)
∇·u=0, (1.1d)

where u, d and P are the fluid velocity, the mean orientation of the molecules and the
fluid pressure, respectively. Coefficient µ of ∆u represents the viscosity of the fluid.
Some descriptions of operators in this system are given as follows. The gradient operator
∇u=(∂jui)i,j; the Laplacian operator ∆u=∑M

i=1 ∂iiu; the convective operator (u·∇)d=

∑M
i=1 ui∂id. Moreover, |d| is the Euclidean norm in RM. The term∇d�∇d is a 2×2 matrix

whose (i, j)-the entry is given by (∇id)·(∇jd). Henceforth, we denote

∇d�∇d=(∇d)T∇d,

where (∇d)T denotes the transpose of ∇d.
For the system (1.1), Lin et al. [26] proposed a C0 finite element scheme for simulating

the kinematic effects in liquid crystal dynamics. To obtain a flow equation without ∆d,
they reformulated the flow equation by using the orientation field equation. In addition,
they proved the discrete energy law. An and Su [3] investigated the time-dependent ne-
matic liquid crystal flows by semi-implicit Galerkin method. They showed the temporal
and the spatial error estimates. We refer the reader to [4, 13] and reference therein.

There are two main difficulties in studying the system (1.1). The spherical constraint
condition |d|= 1 is difficult to implement at the discrete level. Specifically, we can not
imply the spherical constraint at nodes by interpolation. Moreover, the extra term ∇·
((∇d)T∇d) causes strong coupling. Therefore, a Ginzburg-Landau penalty method is
proposed to overcome the difficulty of |d|= 1 [23]. By introducing a Ginzburg-Landau
penalty function 1

ε2 f(d) to replace |∇d|2d, the constraint |d|= 1 is relaxed. The general
penalty version reads as follows:

ut+u·∇u+∇P=µ∆u−∇·((∇dT)∇d), (1.2a)

dt+(u·∇)d+ 1
ε2 f(d)−∆d=0, (1.2b)

∇·u=0, (1.2c)
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where f(d) is the penalty function, and ε>0 is the penalty parameter. The penalty func-
tion is the derivative with respect to d of the function F(d), in detail, f(d) =∇dF(d),
where

F(d)=


1
4
(|d|2−1)2, if |d|≤1,

(|d|2−1)2, if |d|>1.

Girault and Guillén-González [11] proposed a linear fully discrete mixed scheme for solv-
ing a penalized nematic liquid crystal model. They used C0 finite elements in space and
semi-implicit Euler scheme in time to obtain unconditional stability in energy. Further-
more, the first-order optimal error estimates are proved. By using a saddle-point formu-
lation, Badia et al. [5] proposed a finite element scheme for numerical approximation of
the nematic liquid crystal flows. They introduced a Lagrange multiplier that enforces the
sphere condition, so that the limit problem (without penalty) and the penalized problem
(using a Ginzburg-Landau penalty function) can be considered in a unified way. Some
other research on penalty Ericksen-Leslie equations can be found in [7, 16, 24, 36].

Although there is a great deal of literatures about penalty Ericksen-Leslie system, it is
still an open and challenging problem that whether weak solutions (uε,dε) of the system
(1.2) weakly converge to that of the system (1.1) as ε→0 [25]. Therefore, it makes sense
to seek another method to study the system (1.1). In the 2D case, a new method to deal
with the spherical constraint condition |d|= 1 is rewriting the harmonic map heat flow
by polar coordinates, i.e., denoting d(x,t)=(d1,d2)T as

d(x,t)=(cosθ(x,t),sinθ(x,t))T,

where θ(x,t)=argd(x,t) with arg being the argument from the polar coordinates. Com-
pared with the Ginzburg-Landau penalty function, this method preserved the spherical
constraint condition |d|= 1. Similarly, by using spherical coordinates, one can denotes
d(x,t)=(d1,d2,d3)T as

d(x,t)=(cosθ,sinθcosψ,sinθsinψ)T,

in the 3D case [17]. In this situation, the orientation field equation transformed into two
equations:

θt+u·∇θ=∆θ−sinθcosθ|∇ψ|2,
ψt+u·∇ψ=∆ψ+2cotθ∇θ ·∇ψ,

where the definition of ψ is the same as that of θ.
Gong et al. [14] studied a general Ericksen-Leslie system by using the above method

in two dimensions. Nonlinear stress terms and transport terms induce some difficulties
in the analysis. To overcome these problems, they introduced an elliptic operator. Then
they proved the existence of global strong solutions. Bao et al. [6] rewrote the simpli-
fied Ericksen-Leslie system by using the above method and proposed an energy stable
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numerical scheme for the new system. By proving a discrete maximum principle of the
scheme, they ensured equivalence between the new and original system. Moreover, they
showed that the scheme is uniquely solvable and satisfies a discrete energy law.

Recently, many mathematicians have been absorbed in investigating dynamic sys-
tems with variable density. An [1] proposed a fractional-step scheme for the numer-
ical solution of the incompressible Navier-Stokes equations with variable density. He
proved the energy stablility and the first-order temporal error estimates. Zhu et al. [37]
investigated a phase-field moving contact line model with variable densities and vis-
cosities. This model comprises Cahn-Hilliard equation and Navier-Stokes equation. In
addition, a scalar auxiliary variable was used to transform the system into an equivalent
form, which allowed the double well potential to be treated semi-explicitly. About Cahn-
Hilliard equation, we refer the reader to [30–35] and references therein. To the best of our
knowledge, there is little research on the numerical method of the Ericksen-Leslie system
with variable density.

Inspired by the above research, we will consider the simplified incompressible
Ericksen-Leslie system with variable density:

ρt+∇·(ρu)=0, (1.3a)

ρ(ut+u·∇u)+∇P−µ∆u+∇·((∇d)T∇d)=0, (1.3b)

dt+(u·∇)d−∆d−|∇d|2d=0, (1.3c)
|d|=1, (1.3d)
∇·u=0, (1.3e)

in [0,T]×Ω, where ρ is density of the liquid crystals. We consider the boundary condi-
tions

u|∂Ω =0, ∂nd|∂Ω =0,

and initial data
ρ(x,0)=ρ0, u(x,0)=u0, d(x,0)=d0.

This system satisfies the following energy law [27]:

1
2

d
dt

(∫
Ω
(ρ|u|2+|∇d|2)dx+

∫
Ω
(µ|∇u|2+|∆d+|∇d|2d|2)dx

)
=0.

Furthermore, Liu [27] established the global well-posedness of strong solutions in the
vacuum cases under some assumptions. Fan et al. [10] established the existence and
uniqueness of strong solutions with vacuum in a bounded smooth domain.

This paper is organized as follows. In Section 2, we give some notations and assump-
tions. We rewrite the system (1.3) by polar coordinates as aforementioned. In Section 3,
we construct a numerical scheme for the new system and derive the unconditional sta-
bility in energy. In Section 4, we prove that this scheme is of first-order convergence rate
O(τ). Some numerical experiments are given in Section 5.
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2 Preliminaries

We first introduce some notations. Let Ω∈R2 be a bounded open set with boundary ∂Ω.
We denote by (·,·) the scalar product in L2(Ω), and by ‖u‖=(u,u)

1
2 its norm. Wk,p(Ω)

is the classical Sobolev space. It becomes the Hilbert space Hk(Ω) when p=2. Let D(Ω)
be the space of infinitely times differentiable functions on Ω with compact support. The
closure of D(Ω) in Hk(Ω) is denoted by Hk

0(Ω). All these definitions and notations carry
over to two-dimensional vector function spaces. Throughout this paper, the symbol C
denote some positive constants which are independent of the time step size τ. Thanks
to [6], we can use polar coordinate to rewrite the system (1.3), i.e.,

d(x,t)=(cosθ(x,t),sinθ(x,t))T.

For the velocity field equation, a direct calculation shows that

∇d=

[
d1θθx d1θθy
d2θθx d2θθy

]
=

[
−θx sinθ −θy sinθ
θx cosθ θy cosθ

]
=

(
−sinθ
cosθ

)
(θx,θy),

∆d1=(d1θθx)x+(d1θθy)y =−|∇θ|2cosθ−∆θsinθ,

∆d2=(d2θθx)x+(d2θθy)y =−|∇θ|2sinθ+∆θcosθ,

∆d=(∆d1,∆d2)
T =∆θ(−sinθ,cosθ)T−(θ2

x+θ2
y)(cosθ,sinθ)T.

Then

∇·((∇d)T∇d)=(∇d)T∆d+
1
2
∇(|∇d|2)=∆θ∇θ+

1
2
∇(|∇θ|2).

Similarly, with regard to the orientation field equation, we have

dt =(d1θθt,d2θθt)
T = θt(−sinθ,cosθ)T,

and
|∇d|2= θ2

x+θ2
y.

Thus,

∆d+|∇d|2d

=∆θ(−sinθ,cosθ)T−(θ2
x+θ2

x)(cosθ,sinθ)T+(θ2
x+θ2

x)(cosθ,sinθ)T

=∆θ(−sinθ,cosθ)T.

Therefor, the third equation of (1.3) can be rewritten as:

θt(−sinθ,cosθ)+u·∇θ(−sinθ,cosθ)=∆θ(−sinθ,cosθ).
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Then, the system (1.3) can be read as:

ρt+∇·(ρu)=0, (2.1a)
ρ(ut+u·∇u)+∇P̃−µ∆u+∆θ∇θ=0, (2.1b)
θt+u·∇θ−∆θ=0, (2.1c)
∇·u=0, (2.1d)

in [0,T]×Ω, with boundary conditions

u|∂Ω =0, ∇θ ·n|∂Ω =0, (2.2)

and initial conditions

ρ(x,0)=ρ0, u(x,0)=u0, θ(x,0)= θ0, (2.3)

where P̃=P+ 1
2 |∇θ|2.

Remark 2.1. The singularities of orientation field d are defined as the points where |d|=0.
Thus, the system (2.1) can prevent the formation of singularities since |d|≡1.

3 Unconditional energy stable scheme

An unconditional energy stable discrete scheme of the system (2.1)-(2.3) will be given in
this section. Since ∇·u=0, we can rewrite (2.1a) and (2.1b) as follows:

ρt+∇ρ·u+ 1
2

ρ(∇·u)=0,

ρut+ρu·∇u+
1
4

ρ(∇·u)u+∇P̃−µ∆u+∆θ∇θ=0.

We denote the time step τ = T/N and the discrete time tn = nτ for 1≤ n≤N. Because
1
2‖
√

ρnun‖2 is the kinetic energy of the flow, it is more appropriate to establish bounds
based on ‖√ρnun‖2 than on velocity itself. For simplicity, we denote σn =

√
ρn for all

1≤n≤N and σ0=
√

ρ0.
Given the initial conditions

ρ0=ρ0, u0=u0, P̃0= P̃0 and θ0= θ0,

having computed for ρn, un, P̃n, and θn, we compute ρn+1, un+1, P̃n+1 and θn+1 by

ρn+1−ρn

τ
+∇ρn+1 ·un+

1
2

ρn+1(∇·un)=0, (3.1a)

ρn un+1−un

τ
+ρn+1un ·∇un+1+

1
4

ρn+1(∇·un)un+1

+∇P̃n+1−µ∆un+1+∆θn+1∇θn =0, (3.1b)

θn+1−θn

τ
+un+1 ·∇θn−∆θn+1=0, (3.1c)

ε(P̃n+1− P̃n)+∇·un+1=0, (3.1d)
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where ε> 0 is the penalty parameter [2]. It is clear that (3.1a) is uniquely solvable. We
next prove the existence and uniqueness of the solution to (3.1b)-(3.1d). Since (3.1b)-
(3.1d) having the same number of unknowns as equations, uniqueness implies existence.
Let ûn+1, θ̂n+1 and P̂n+1 denote the difference between two possible solutions, we can see
that they satisfy

ρn

τ
ûn+1+ρn+1un ·∇ûn+1+

1
4

ρn+1(∇·un)ûn+1

+∇P̂n+1−µ∆ûn+1+∆θ̂n+1∇θn =0, (3.2a)
1
τ

θ̂n+1+ûn+1 ·∇θn−∆θ̂n+1=0, (3.2b)

εP̂n+1+∇·ûn+1=0. (3.2c)

Testing (3.2a)-(3.2c) by ûn+1,−∆θ̂n+1 and P̂n+1 respectively, multiplying (3.1a) by |ûn+1|2,
we have

1
τ
(‖σn+1ûn+1‖2+‖∇θ̂n+1‖2)+ε‖P̂n+1‖2+µ‖∇ûn+1‖2+‖∆θ̂n+1‖2=0,

which implies that ûn+1=0 and P̂n+1=0. Testing (3.2b) by θ̂n+1, since ûn+1=0, we derive

1
τ
‖θ̂n+1‖2+‖∇θ̂n+1‖2=0,

which implies that θ̂n+1 = 0. Thus, we have proved uniqueness and existence of (3.1b)-
(3.1d).

Theorem 3.1. For any τ>0, the system (3.1a)-(3.1d) satisfy the following energy estimates:

‖ρm+1‖2+
m

∑
n=0
‖ρn+1−ρn‖2=‖ρ0‖2, (3.3)

and

‖σm+1um+1‖2+ετ‖P̃m‖2+‖∇θm+1‖2+2τ
m

∑
n=0

(µ‖∇un+1‖2+‖∆θn+1‖2)

+
m

∑
n=0

(‖σn(un+1−un)‖2+ετ‖P̃n+1− P̃n‖2+‖∇θn+1−∇θn‖2)

=‖σ0u0‖2+ετ‖P̃0‖2+‖∇θ0‖2. (3.4)

Proof. Testing (3.1a) by ρn+1, we deduce that

1
2τ

(‖ρn+1‖2−‖ρn‖2+‖ρn+1−ρn‖2)+(∇ρn+1 ·un,ρn+1)

+
1
2
(ρn+1(∇·un),ρn+1)=0.
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According to the boundary condition of velocity, we note that

(∇ρn+1 ·un,ρn+1)+
1
2
(ρn+1(∇·un),ρn+1)

=
1
2

∫
Ω
∇·(|ρn+1|2 ·un)dx

=
1
2

∫
∂Ω
|ρn+1|2 ·un ·ndx=0,

which implies
‖ρn+1‖2−‖ρn‖2+‖ρn+1−ρn‖2=0.

For any integer m∈ (0,N], summing from 0 to m, we get

‖ρm+1‖2+
m

∑
n=0
‖ρn+1−ρn‖2=‖ρ0‖2.

Taking the inner product of (3.1a) with 1
2 |un+1|2, (3.1b) with un+1 and (3.1c) with−∆θn+1,

we have
1

2τ
(‖σn+1un+1‖2−‖σnun+1‖2)+

1
2
(∇ρn+1 ·un,|un+1|2)

+
1
4
(ρn+1(∇·un),|un+1|2)=0, (3.5a)

1
2τ

(‖σnun+1‖2−‖σnun‖2+‖σn(un+1−un)‖2)+µ‖∇un+1‖2

+(ρn+1un ·∇un+1,un+1)+
1
4
(ρn+1(∇·un)un+1,un+1)

+(∇P̃n+1,un+1)+(∆θn+1∇θn,un+1)=0, (3.5b)
1

2τ
(‖∇θn+1‖2−‖∇θn‖2+‖∇θn+1−∇θn‖2)

−(un+1 ·∇θn,∆θn+1)+‖∆θn+1‖2=0. (3.5c)

From (3.1d), we infer that

2τ(∇P̃n+1,un+1)= ετ‖P̃n+1‖2−ετ‖P̃n‖2+ετ‖P̃n+1− P̃n‖2. (3.6)

Note that

(ρn+1un ·∇un+1,un+1)+
1
4
(ρn+1(∇·un)un+1,un+1)

+
1
2
(∇ρn+1 ·un,|un+1|2)+ 1

4
(ρn+1(∇·un),|un+1|2)

=
1
2

∫
Ω
∇·(ρn+1un ·|un+1|2)dx

=
1
2

∫
∂Ω

ρn+1un ·|un+1|2 ·ndx=0.
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Combining with (3.5a)-(3.6), we obtain that

‖σn+1un+1‖2+ετ‖P̃n+1‖2+‖∇θn+1‖2+‖σn(un+1−un)‖2

+ετ‖P̃n+1− P̃n‖2+‖∇θn+1−∇θn‖2+2τ(µ‖∇un+1‖2+‖∆θn+1‖2)

=‖σnun‖2+ετ‖P̃n‖2+‖∇θn‖2.

For any integer m∈ (0,N], summing from 0 to m, we can see that

‖σm+1um+1‖2+ετ‖P̃m‖2+‖∇θm+1‖2+2τ
m

∑
n=0

(µ‖∇un+1‖2+‖∆θn+1‖2)

+
m

∑
n=0

(‖σn(un+1−un)‖2+ετ‖P̃n+1− P̃n‖2+‖∇θn+1−∇θn‖2)

=‖σ0u0‖2+ετ‖P̃0‖2+‖∇θ0‖2.

This completes the proof.

We will use the finite element method for the spatial discretization. Let Th be a family
of quasi-uniform triangular partition of Ω, the ordered triangles are denoted by Ki, (i=
1,.. .,B). Let hi = diam(Ki), denote by h=max{h1,h2,··· ,hB} the mesh size. Let us denote
Vh⊂H1

0(Ω), Mh⊂L2
0(Ω) and Wh,Gh⊂H1(Ω) be the finite-dimensional subspaces, where

L2
0(Ω)={q∈L2(Ω),

∫
Ω qdx=0}. More specifically,

Wh ={wh∈C(Ω) |wh∈P2(K), ∀K∈Th},
Vh ={vh∈C(Ω)2 |vh∈P2(K)2, ∀K∈Th},
Gh ={gh∈C(Ω) | gh∈P1(K), ∀K∈Th},
Mh ={qh∈C(Ω) |qh∈P1(K), ∀K∈Th}.

Then, the fully discretized scheme is described as follows: find ρn+1
h ∈Wh, un+1

h ∈Vh,
P̃n+1

h ∈Mh and θn+1
h ∈Gh, such that

1
τ
(ρn+1

h −ρn
h ,wh)+(∇ρn+1

h ·un
h ,wh)+

1
2
(ρn+1

h (∇·un
h),wh)=0, ∀wh∈Wh,

1
τ
(ρn

h(u
n+1
h −un

h),vh)+(ρn+1
h un

h ·∇un+1
h ,vh)+

1
4
(ρn+1

h (∇·un
h)u

n+1
h ,vh)

−(P̃n+1
h ,∇·vh)+µ(∇un+1

h ,∇vh)+(∆θn+1
h ∇θn

h ,vh)=0, ∀vh∈Vh,
1
τ
(θn+1

h −θn
h ,gh)+(un+1

h ·∇θn
h ,gh)+(∇θn+1

h ,∇gh)=0, ∀gh∈Gh,

ε(P̃n+1
h − P̃n

h ,qh)+(∇·un+1
h ,qh)=0, ∀qh∈Mh.

It is clear that the energy estimates (3.3) and (3.4) still hold for the full discrete scheme.



10 X. Zhang, D. Wang, J. Zhang and H. Jia / Adv. Appl. Math. Mech., xx (202x), pp. 1-28

4 Temporal error analysis

This section is devoted to the temporal error analysis for the scheme (3.1a)-(3.1d). We
show that this scheme is of first-order convergence rate O(τ). To this end, we need the
following assumptions of density:

{
{ρn}n=0,···,N is uniformly bounded in L∞

for all n=0,··· ,N, there holds ρn≥χ a.e. in Ω,
(4.1)

where χ is a number in (0,ρmin
0 ]. For more detailed discusses of rationality of (4.1), we

refer to Remark 2.4 in [15], Remark 4.1 and Remark 4.2 in [1].
Furthermore, we make the following regularity assumptions on the exact solution to

obtain the convergence rates of the scheme:

ρ∈H2(0,T;L2(Ω))∩L2(0,T;W1,∞(Ω)), (4.2a)

u∈H2(0,T;L2(Ω))∩L∞(0,T;H1
0∩H2(Ω)), (4.2b)

P̃∈L∞(0,T;L2
0(Ω)∩H1(Ω)), P̃t,P̃tt∈C([0,T];L2

0(Ω)), (4.2c)

θ∈H2(0,T;L2(Ω))∩L∞(0,T;H1
0∩H2(Ω)). (4.2d)

We denote

en
ρ =ρ(tn)−ρn, en

u =u(tn)−un, ξn = P̃(tn)− P̃n, en
θ = θ(tn)−θn.

Taking t= tn+1 in (2.1) and subtracting from (3.1a)-(3.1d), since ∇·u(tn)=0, we get

en+1
ρ −en

ρ

τ
=−∇ρ(tn+1)·u(tn+1)+∇ρn+1 ·un

− 1
2

ρ(tn+1)(∇·u(tn))+
1
2

ρn+1(∇·un)+Rn+1
ρ , (4.3a)

ρn en+1
u −en

u
τ

=−ρ(tn+1)u(tn+1)·∇u(tn+1)+ρn+1un ·∇un+1

− 1
4

ρ(tn+1)(∇·u(tn))u(tn+1)+
1
4

ρn+1(∇·un)un+1

−∇ξn+1+µ∆en+1
u −∆θ(tn+1)∇θ(tn+1)+∆θn+1∇θn+Rn+1

u , (4.3b)

ε(ξn+1−ξn)=−∇·en+1
u +ε(P̃(tn+1)− P̃(tn)), (4.3c)

en+1
θ −en

θ

τ
=∆en+1

θ −u(tn+1)·∇θ(tn+1)+un+1 ·∇θn+Rn+1
θ , (4.3d)
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where

Rn+1
ρ =

ρ(tn+1)−ρ(tn)

τ
−ρt(tn+1),

Rn+1
u =ρn u(tn+1)−u(tn)

τ
−ρ(tn+1)ut(tn+1),

Rn+1
θ =

θ(tn+1)−θ(tn)

τ
−θt(tn+1).

Lemma 4.1. Assuming that the solution to (2.1) satisfies (4.2) and the assumption (4.1) hold.
Then, we have

‖Rn+1
ρ ‖2≤Cτ

∫ tn+1

tn

‖ρtt(t)‖2dt≤Cτ2,

‖Rn+1
u ‖2≤Cτ

∫ tn+1

tn

(‖utt(t)‖2+‖ρt(t)‖2)dt+C1‖en
ρ‖2≤Cτ2+C1‖en

ρ‖2,

‖Rn+1
θ ‖2≤Cτ

∫ tn+1

tn

‖θtt(t)‖2dt≤Cτ2.

Proof. Rewrite Rn+1
u as following

Rn+1
u =ρn

(
u(tn+1)−u(tn)

τ
−ut(tn+1)

)
−
(

en
ρ+
∫ tn+1

tn

ρt(t)dt
)

ut(tn+1).

According to the integral residual of the Taylor formula, we obtian

Rn+1
u =

ρn

τ

∫ tn+1

tn

(t−tn)utt(t)dt−
(

en
ρ+
∫ tn+1

tn

ρt(t)dt
)

ut(tn+1),

which implies that

‖Rn+1
u ‖2≤2

∥∥∥∥ρn

τ

∫ tn+1

tn

(t−tn)utt(t)dt
∥∥∥∥2

+2‖en
ρ ut(tn+1)‖2

+2
∥∥∥∥(∫ tn+1

tn

ρt(t)dt
)

ut(tn+1)

∥∥∥∥2

:=K1+K2+K3.

From (4.1) and (4.2), using Hölder inequality, we can deduce that

K1≤
2
τ2 ‖ρ

n‖2
L∞ ·
∥∥∥∥∫ tn+1

tn

(t−tn)utt(t)dt
∥∥∥∥2

≤ C
τ2

∥∥∥∥(∫ tn+1

tn

(t−tn)
2dt
) 1

2
(∫ tn+1

tn

(
utt(t)

)2

dt
) 1

2
∥∥∥∥2

≤Cτ
∫ tn+1

tn

‖utt‖2dt≤Cτ2,
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K2≤2‖en
ρ‖2 ·‖u(tn+1)‖2

L∞≤C1‖en
ρ‖2,

K3≤2
∥∥∥∥∫ tn+1

tn

ρt(t)dt
∥∥∥∥2

·‖u(tn+1)‖2
L∞

≤C
∥∥∥∥(∫ tn+1

tn

12dt
) 1

2
(∫ tn+1

tn

ρ2
t (t)dt

) 1
2
∥∥∥∥2

≤Cτ
∫ tn+1

tn

‖ρt‖2dt≤Cτ2.

Similarly, we can proof the inequalities of ‖Rn+1
ρ ‖2 and ‖Rn+1

θ ‖2.

Lemma 4.2 (Gronwall’s inequality). Let ak, bk, ck and γk, for integers k≥0, be the nonnegative
numbers such that

an+τ
n

∑
k=0

bk≤τ
n

∑
k=0

γkak+τ
n

∑
k=0

ck+B for n≥0. (4.4)

Suppose that τγk <1 for all k, and set σk =(1−τγk)
−1. Then

an+τ
n

∑
k=0

bk≤exp
(

τ
n

∑
k=0

γkσk

)(
τ

n

∑
k=0

ck+B
)

for n≥0. (4.5)

Remark 4.1. If the term τ∑n
k=0 γkak in (4.4) extends only up to n−1, then the estimate

(4.5) holds for all 0<τ<1 with σk =1.

Theorem 4.1. Assuming that the solutions to (2.1) satisfies (4.2) and the assumption (4.1) hold,
then for sufficiently small τ, there are the following error estimates

‖eN
ρ ‖2+

N−1

∑
n=0
‖en+1

ρ −en
ρ‖2≤Cτ2+χ−1τ

N−1

∑
n=0
‖σnen

u‖2+
1
8

µτ
N−1

∑
n=0
‖∇en

u‖2. (4.6)

Proof. Multiplying (4.3a) by 2τen+1
ρ , and integral over Ω, we can see that

‖en+1
ρ ‖2−‖en

ρ‖2+‖en+1
ρ −en

ρ‖2

=−2τ(∇ρ(tn+1)·(u(tn+1)−u(tn)),en+1
ρ )−2τ(∇en+1

ρ ·un,en+1
ρ )

−2τ(∇ρ(tn+1)·en
u,en+1

ρ )−τ(ρ(tn+1)(∇·en
u),e

n+1
ρ )

−τ(en+1
ρ (∇·un),en+1

ρ )+2τ(Rn+1
ρ ,en+1

ρ ).

Note that
−2τ(∇en+1

ρ ·un,en+1
ρ )−τ(en+1

ρ ·(∇·un),en+1
ρ )=0.
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Applying the Young’s inequality and ‖∇·v‖≤‖∇v‖, we obtain that

‖en+1
ρ ‖2−‖en

ρ‖2+‖en+1
ρ −en

ρ‖2

≤τ‖∇ρ(tn+1)‖2
L∞ ·
∥∥∥∥∫ tn+1

tn

ut(t)dt
∥∥∥∥2

+τ‖en+1
ρ ‖2

+τ‖en
u‖2+τ‖∇ρ(tn+1)‖2

L∞ ·‖en+1
ρ ‖2

+
1
8

µτ‖∇en
u‖2+Cτ‖∇ρ(tn+1)‖2

L∞ ·‖en+1
ρ ‖2

+τ‖Rn+1
ρ ‖2+τ‖en+1

ρ ‖2

≤Cτ3+Cτ‖en+1
ρ ‖2+χ−1τ‖σnen

u‖2+
1
8

µτ‖∇en
u‖2,

where we have use the assumptions (4.1) and (4.2). Adding up from 0 to N−1, we derive

‖eN
ρ ‖2+

N−1

∑
n=0
‖en+1

ρ −en
ρ‖2

≤Cτ2+Cτ
N−1

∑
n=0
‖en+1

ρ ‖2+χ−1τ
N−1

∑
n=0
‖σnen

u‖2+
1
8

µτ
N−1

∑
n=0
‖∇en

u‖2.

According to the discrete Gronwall’s inequality, we obtain

‖eN
ρ ‖2+

N−1

∑
n=0
‖en+1

ρ −en
ρ‖2≤Cτ2+χ−1τ

N−1

∑
n=0
‖σnen

u‖2+
1
8

µτ
N−1

∑
n=0
‖∇en

u‖2.

Thus, we complete the proof.

Lemma 4.3. Assuming that the solution to (2.1) satisfies (4.2) and the assumption (4.1) hold,
then for sufficiently small τ, there are the following error estimates

‖σNeN
u ‖2+ετ‖ξN‖2+‖∇eN

θ ‖2+
3
2

τ
N−1

∑
n=0

(µ‖∇en+1
u ‖2+‖∆en+1

θ ‖2)

+
N−1

∑
n=0

(‖σn(en+1
u −en

u)‖2+ετ‖ξn+1−ξn‖2+‖∇en+1
θ −∇en

θ‖2)≤Cτ. (4.7)

Proof. Taking the inner product of (4.3b) with 2τen+1
u , (3.1a) with τ|en+1

u |2 and (4.3d) with
−2τ∆en+1

θ , we obtain

‖σn+1en+1
u ‖2−‖σnen

u‖2+‖σn(en+1
u −en

u)‖2+2µτ‖∇en+1
u ‖2

+‖∇en+1
θ ‖2−‖∇en

θ‖2+‖∇en+1
θ −∇en

θ‖2+2τ‖∆en+1
θ ‖2
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=−2τ(ρ(tn+1)u(tn+1)·∇u(tn+1),en+1
u )+2τ(ρn+1un ·∇un+1,en+1

u )

− 1
2

τ(ρ(tn+1)(∇·u(tn))u(tn+1),en+1
u )+

1
2

τ(ρn+1(∇·un)un+1,en+1
u )

−2τ(∇ξn+1,en+1
u )−2τ(∆θ(tn+1)∇θ(tn+1),en+1

u )

+2τ(∆θn+1∇θn,en+1
u )+2τ(Rn+1

u ,en+1
u )−τ(∇ρn+1 ·un,|en+1

u |2)

− 1
2

τ(ρn+1(∇·un),|en+1
u |2)+2τ(u(tn+1)·∇θ(tn+1),∆en+1

θ )

−2τ(un+1 ·∇θn,∆en+1
θ )−2τ(Rn+1

θ ,∆en+1
θ ) :=

13

∑
i=1

Ii.

Rewriting I1+ I2+ I3+ I4+ I9+ I10 as follows,

−2τ(en+1
ρ u(tn+1)·∇u(tn+1),en+1

u )−2τ(ρn+1un ·∇en+1
u ,en+1

u )

−2τ(ρn+1(u(tn+1)−u(tn))·∇u(tn+1),en+1
u )

−2τ(ρn+1en
u ·∇u(tn+1),en+1

u )− 1
2

τ(en+1
ρ (∇·u(tn))u(tn+1),en+1

u )

− 1
2

τ(ρn+1(∇un)en+1
u ,en+1

u )− 1
2

τ(ρn+1(∇·en
u)u(tn+1),en+1

u )

−τ(∇ρn+1 ·un,|en+1
u |2)− 1

2
τ(ρn+1(∇·un),|en+1

u |2).

Note that

−2τ(ρn+1un ·∇en+1
u ,en+1

u )− 1
2

τ(ρn+1(∇·un)en+1
u ,en+1

u )

−τ(∇ρn+1 ·un,|en+1
u |2)− 1

2
τ(ρn+1(∇·un),|en+1

u |2)=0.

Applying assumptions (4.1), (4.2) and the result of Theorem 4.1, we have

I1+ I2+ I3+ I4+ I9+ I10

≤τ‖en+1
ρ ‖2+τ‖u(tn+1)‖2

L∞ ·‖∇u(tn+1)‖2
L∞ ·‖en+1

u ‖2

+τ‖ρn+1‖2
L∞ ·
∥∥∥∥∫ tn+1

tn

ut(t)dt
∥∥∥∥2

+τ‖∇u(tn+1)‖2
L∞ ·‖en+1

u ‖2

+τ‖ρn+1‖2
L∞ ·‖en

u‖2+τ‖∇u(tn+1)‖2
L∞ ·‖en+1

u ‖2

+τ‖en+1
ρ ‖2+

1
8

τ‖∇·u(tn)‖2
L∞ ·‖u(tn+1)‖2

L∞ ·‖en+1
u ‖2

+
1
8

µτ‖∇·en
u‖2+Cτ‖ρn+1‖2

L∞ ·‖u(tn+1)‖2
L∞ ·‖en+1

u ‖2

≤Cτ3+2χ−1τ2
N−1

∑
n=0
‖σnen

u‖2+
1
4

µτ2
N−1

∑
n=0
‖∇en

u‖2

+Cτ‖σnen
u‖2+Cτ‖σn+1en+1

u ‖2+
1
8

µτ‖∇en
u‖2.
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From (4.3c), we deduce that

I5=−2ετ(ξn+1,ξn+1−ξn)+2ετ(ξn+1,P̃(tn+1)− P̃(tn))

≤−ετ(‖ξn+1‖2−‖ξn‖2+‖ξn+1−ξn‖2)+ε2τ2‖ξn+1‖2+Cτ2.

Rewrite I6+ I11 and I7+ I12 as follows,

I6+ I11=−2τ(∆θ(tn+1)∇θ(tn+1),u(tn+1))+2τ(∆θ(tn+1)∇θ(tn+1),un+1)

+2τ(u(tn+1)·∇θ(tn+1),∆θ(tn+1))−2τ(u(tn+1)·∇θ(tn+1),∆θn+1)

=2τ(∆θ(tn+1)·un+1−∆θn+1 ·u(tn+1),∇θ(tn+1)),

I7+ I12=2τ(∆θn+1∇θn,u(tn+1))−2τ(∆θn+1∇θn,un+1)

−2τ(un+1 ·∇θn,∆θ(tn+1))+2τ(un+1 ·∇θn,∆θn+1)

=2τ(∆θn+1 ·u(tn+1)−∆θ(tn+1)·un+1,∇θn),

which implies that

I6+ I7+ I11+ I12

=2τ(∆θ(tn+1)·un+1−∆θn+1 ·u(tn+1),∇θ(tn+1)−∇θn)

=−2τ(∆θ(tn+1)·en+1
u ,∇θ(tn+1)−∇θn)

+2τ(∆en+1
θ ·u(tn+1),∇θ(tn+1)−∇θn)

:=M1+M2.

According to (4.2), we deduce that

M1≤τ‖en+1
u ‖2+τ‖∆θ(tn+1)‖2

L∞ ·
∥∥∥∥∫ tn+1

tn

∇θt(t)dt
∥∥∥∥2

+τ‖en+1
u ‖2+τ‖∆θ(tn+1)‖2

L∞ ·‖∇en
θ‖2

≤Cτ3+2τ‖en+1
u ‖2+Cτ‖∇en

θ‖2,

M2≤
1
8

τ‖∆en+1
θ ‖2+Cτ‖u(tn+1)‖2

L∞ ·
∥∥∥∥∫ tn+1

tn

∇θt(t)dt
∥∥∥∥2

+
1
8

τ‖∆en+1
θ ‖2+Cτ‖u(tn+1)‖2

L∞ ·‖∇en
θ‖2

≤Cτ3+
1
4

τ‖∆en+1
θ ‖2+Cτ‖∇en

θ‖2.

Thus

I6+ I7+ I11+ I12≤Cτ3+2τ‖en+1
u ‖2+

1
4

τ‖∆en+1
θ ‖2+Cτ‖∇en

θ‖2.
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Using Lemma 4.1 and Theorem 4.1, we have

I8+ I13=2τ(Rn+1
u ,en+1

u )−2τ(Rn+1
θ ,∆en+1

θ )

≤ 1
C1

τ‖Rn+1
u ‖2+Cτ‖en+1

u ‖2+Cτ‖Rn+1
θ ‖2+

1
4

τ‖∆en+1
θ ‖2

≤Cτ3+χ−1τ2
N−1

∑
n=0
‖σnen

u‖2+
1
8

µτ2
N−1

∑
n=0
‖∇en

u‖2

+Cτ‖σn+1en+1
u ‖2+

1
4

τ‖∆en+1
θ ‖2.

Combining I1− I13, we get

‖σn+1en+1
u ‖2−‖σnen

u‖2+‖σn(en+1
u −en

u)‖2+2µτ‖∇en+1
u ‖2

+ετ‖ξn+1‖2−ετ‖ξn‖2+ετ‖ξn+1−ξn‖2

+‖∇en+1
θ ‖2−‖∇en

θ‖2+‖∇en+1
θ −∇en

θ‖2+
3
2

τ‖∆en+1
θ ‖2

≤Cτ3+Cτ2+3χ−1τ2
N−1

∑
n=0
‖σnen

u‖2+
3
8

µτ2
N−1

∑
n=0
‖∇en

u‖2

+Cτ‖σnen
u‖2+Cτ‖σn+1en+1

u ‖2+
1
8

µτ‖∇en
u‖2

+ε2τ2‖ξn+1‖2+Cτ‖∇en
θ‖2.

Adding up from 0 to N−1, we obtain

‖σNeN
u ‖2+ετ‖ξN‖2+‖∇eN

θ ‖2+
3
2

τ
N−1

∑
n=0

(µ‖∇en+1
u ‖2+‖∆en+1

θ ‖2)

+
N−1

∑
n=0

(‖σn(en+1
u −en

u)‖2+ετ‖ξn+1−ξn‖2+‖∇en+1
θ −∇en

θ‖2)

≤Cτ2+Cτ+Cτ
N−1

∑
n=0
‖σn+1en+1

u ‖2+ε2τ2
N−1

∑
n=0
‖ξn+1‖2+Cτ

N−1

∑
n=0
‖∇en

θ‖2.

Applying Gronwall’s inequality, we infer that

‖σNeN
u ‖2+ετ‖ξN‖2+‖∇eN

θ ‖2+
3
2

τ
N−1

∑
n=0

(µ‖∇en+1
u ‖2+‖∆en+1

θ ‖2)

+
N−1

∑
n=0

(‖σn(en+1
u −en

u)‖2+ετ‖ξn+1−ξn‖2+‖∇en+1
θ −∇en

θ‖2)≤Cτ.

This completes the proof.
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From Lemma 4.3 we can derive that ‖∇un‖, ‖∆θn‖≤C, since ‖∇en
u‖, ‖∆en

θ‖≤C, ∀0≤
n≤N.

Theorem 4.2. Assuming that the solutions to (2.1) satisfies (4.2) and the assumption (4.1) hold,
then for sufficiently small τ, there are the following error estimates

‖σNeN
u ‖2+ετ‖ξN‖2+‖∇eN

θ ‖2+τ
N−1

∑
n=0

(
µ‖∇en+1

u ‖2+‖∆en+1
θ ‖2

)
+

N−1

∑
n=0

(‖σn(en+1
u −en

u)‖2+ετ‖ξn+1−ξn‖2+‖∇en+1
θ −∇en

θ‖2)

≤C(τ2+ε2τ2).

Proof. Proceeding the procedure in the proof of Lemma 4.3, we have

‖σn+1en+1
u ‖2−‖σnen

u‖2+‖σn(en+1
u −en

u)‖2+2µτ‖∇en+1
u ‖2

+ετ‖ξn+1‖2−ετ‖ξn‖2+ετ‖ξn+1−ξn‖2

+‖∇en+1
θ ‖2−‖∇en

θ‖2+‖∇en+1
θ −∇en

θ‖2+
3
2

τ‖∆en+1
θ ‖2

≤Cτ3+3χ−1τ2
N−1

∑
n=0
‖σnen

u‖2+
3
8

µτ2
N−1

∑
n=0
‖∇en

u‖2

+Cτ‖σnen
u‖2+Cτ‖σn+1en+1

u ‖2+
1
8

µτ‖∇en
u‖2

+Cτ‖∇en
θ‖2+2ετ(ξn+1,P̃(tn+1)− P̃(tn)). (4.8)

We estimate the last term by using the method inspired in [28]. Consider the decomposi-
tion [12]:

V=V0⊕V⊥0 , where V⊥0 ={−∆−1∇q : q∈L2(Ω)},

and v=−∆−1∇q if and only if−∆v=∇q with v|∂Ω=0. It is well know that the divergence
operator is an isomorphism operator from V⊥0 to L2

0, thus, there exists a unique φ(t)∈V⊥0
such that ∇·φ(t)= P̃t and ∇·φt(t)= P̃tt with

‖∇φ(t)‖≤C‖P̃t(t)‖, ‖∇φt(t)‖≤C‖P̃tt(t)‖,

for P̃t(t),P̃tt(t)∈L2
0(Ω). Then, we have

2ετ

(
ξn+1,

∫ tn+1

tn

P̃t(t)dt
)
=2ετ

(
ξn+1,

∫ tn+1

tn

∇·φ(t)dt
)

.
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Taking the inner product of (4.3b) by 2ετ
∫ tn+1

tn
φ(t)dt, we get

2ετ

(
ξn+1,

∫ tn+1

tn

∇·φ(t)dt
)

=2ε

(
ρn(en+1

u −en
u),
∫ tn+1

tn

φ(t)dt
)
+2ετ

(
ρ(tn+1)u(tn+1)·∇u(tn+1),

∫ tn+1

tn

φ(t)dt
)

−2ετ

(
ρn+1un ·∇un+1,

∫ tn+1

tn

φ(t)dt
)
+

1
2

ετ

(
ρ(tn+1)(∇·u(tn))u(tn+1),

∫ tn+1

tn

φ(t)dt
)

− 1
2

ετ

(
ρn+1(∇·un)un+1,

∫ tn+1

tn

φ(t)dt
)
+2ετ

(
∆θ(tn+1)∇θ(tn+1),

∫ tn+1

tn

φ(t)dt
)

−2ετ

(
∆θn+1∇θn,

∫ tn+1

tn

φ(t)dt
)
+2εµτ

(
∇en+1

u ,
∫ tn+1

tn

∇φ(t)dt
)

−2ετ

(
Rn+1

u ,
∫ tn+1

tn

φ(t)dt
)

:=
9

∑
i=1

Ji.

Rewrite J1 as

J1=2ε

(
ρn+1en+1

u ,
∫ tn+1

tn

φ(t)dt
)
−2ε

(
ρnen

u,
∫ tn

tn−1

φ(t)dt
)

+2ε

(
ρnen

u,
∫ tn

tn−1

φ(t)dt−
∫ tn+1

tn

φ(t)dt
)
+2ε

(
(ρn−ρn+1)en+1

u ,
∫ tn+1

tn

φ(t)dt
)

.

From the assumptions on P̃t and P̃tt, we have φ, φt ∈C(0,T;H1
0). Thus, there exist αn ∈

[tn,tn+1], αn−1∈ [tn−1,tn] and α̃n∈ [tn−1,tn+1] such that

2ε

(
ρnen

u,
∫ tn

tn−1

φ(t)dt−
∫ tn+1

tn

φ(t)dt
)

=−2ετ(ρnen
u,φ(αn)−φ(αn−1))=−2ετ(αn−αn−1)(ρ

nen
u,φt(α̃n))

≤4ετ2|(ρnen
u,φt(α̃n))|≤2τ‖σnen

u‖2+Cε2τ3.

For the last term of J1, using the inequality

‖v‖L3≤C‖v‖ 1
2 ‖∇v‖ 1

2 ,

we have

2ε

(
(ρn−ρn+1)en+1

u ,
∫ tn+1

tn

φ(t)dt
)

=2ε

(
(en+1

ρ −en
ρ)e

n+1
u ,

∫ tn+1

tn

φ(t)dt
)
−2ε

((∫ tn+1

tn

ρt(t)dt
)

en+1
u ,

∫ tn+1

tn

φ(t)dt
)

≤Cετ‖en+1
ρ −en

ρ‖·‖σn+1en+1
u ‖ 1

2 ·‖∇en+1
u ‖ 1

2 ·‖∇φ(αn)‖

+Cετ

∥∥∥∥∫ tn+1

tn

ρt(t)dt
∥∥∥∥·‖∇en+1

u ‖·‖∇φ(αn)‖
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≤τ‖en+1
ρ −en

ρ‖2+Cε4τ‖σn+1en+1
u ‖2+

1
24

µτ‖∇en+1
u ‖2

+Cε2τ

∥∥∥∥∫ tn+1

tn

ρt(t)dt
∥∥∥∥2

+
1
24

µτ‖∇en+1
u ‖2

≤Cτ3+Cε2τ3+χ−1τ2
N−1

∑
n=0
‖σnen

u‖2+
1
8

µτ2
N−1

∑
n=0
‖∇en

u‖2

+Cε4τ‖σn+1en+1
u ‖2+

1
12

µτ‖∇en+1
u ‖2.

Rewrite J2+ J3 as

J2+ J3=2ετ

(
en+1

ρ u(tn+1)·∇u(tn+1),
∫ tn+1

tn

φ(t)dt
)

+2ετ

(
ρn+1(u(tn+1)−u(tn))·∇u(tn+1),

∫ tn+1

tn

φ(t)dt
)

+2ετ

(
ρn+1un ·∇en+1

u ,
∫ tn+1

tn

φ(t)dt
)

+2ετ

(
ρn+1en

u ·∇u(tn+1),
∫ tn+1

tn

φ(t)dt
)

.

According to Theorem 4.1 and Lemma 4.3, we deduce that

J2+ J3≤τ‖en+1
ρ ‖2+4ε2τ‖u(tn+1)‖2

L∞ ·‖∇u(tn+1)‖2
L∞ ·
∥∥∥∥∫ tn+1

tn

φ(t)dt
∥∥∥∥2

+ε2τ‖ρn+1‖2
L∞ ·
∥∥∥∥∫ tn+1

tn

ut(t)dt
∥∥∥∥2

·‖∇u(tn+1)‖2
L∞ +τ

∥∥∥∥∫ tn+1

tn

φ(t)dt
∥∥∥∥2

+
1

24
µτ‖∇en+1

u ‖2+Cε2τ‖ρn+1‖2
L∞ ·‖∇un‖2 ·

∥∥∥∥∫ tn+1

tn

∇φ(t)dt
∥∥∥∥2

+τ‖ρn+1‖2
L∞ ·‖en

u‖2+ε2τ‖∇u(tn+1)‖2
L∞ ·
∥∥∥∥∫ tn+1

tn

φ(t)dt
∥∥∥∥2

≤Cτ3+Cε2τ3+χ−1τ2
N−1

∑
n=0
‖σnen

u‖2+
1
8

µτ2
N−1

∑
n=0
‖∇en

u‖2

+Cτ‖σnen
u‖2+

1
24

µτ‖∇en+1
u ‖2.

Similarly, we can infer that

J4+ J5≤Cτ3+Cε2τ3+χ−1τ2
N−1

∑
n=0
‖σnen

u‖2+
1
8

µτ2
N−1

∑
n=0
‖∇en

u‖2

+
1
24

µτ‖∇en
u‖2+

1
24

µτ‖∇en+1
u ‖2.
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Applying the inequality ‖∇2v‖≤C‖∆v‖, we get

J6+ J7=2ετ

(
∆en+1

θ ∇θ(tn+1),
∫ tn+1

tn

φ(t)dt
)

+2ετ

(
∆θn+1

∫ tn+1

tn

∇θt(t)dt,
∫ tn+1

tn

φ(t)dt
)

+2ετ

(
∆θn+1∇en

θ ,
∫ tn+1

tn

φ(t)dt
)

≤1
2

τ‖∆en+1
θ ‖2+Cε2τ‖∇θ(tn+1)‖2

L∞ ·
∥∥∥∥∫ tn+1

tn

φ(t)dt
∥∥∥∥2

+ε2τ‖∆θn+1‖2 ·
∥∥∥∥∫ tn+1

tn

∆θt(t)dt
∥∥∥∥2

+τ

∥∥∥∥∫ tn+1

tn

∇φ(t)dt
∥∥∥∥2

+
1
4

τ‖∆en
θ‖2+Cε2τ‖∆θn+1‖2 ·

∥∥∥∥∫ tn+1

tn

∇φ(t)dt
∥∥∥∥2

≤Cτ3+Cε2τ3+
1
4

τ‖∆en
θ‖2+

1
2

τ‖∆en+1
θ ‖2.

Using Lemma 4.1 and Theorem 4.1, we have

J8+ J9≤
1
24

µτ‖∇en+1
u ‖2+Cε2τ

∥∥∥∥∫ tn+1

tn

∇φ(t)dt
∥∥∥∥2

+
1

C1
τ‖Rn+1

u ‖2+Cε2τ

∥∥∥∥∫ tn+1

tn

φ(t)dt
∥∥∥∥2

≤Cτ3+Cε2τ3+χ−1τ2
N−1

∑
n=0
‖σnen

u‖2+
1
8

µτ2
n−1

∑
n=0
‖∇en

u‖2+
1
24

µτ‖∇en+1
u ‖2.

Combining J1− J9, we derive

‖σn+1en+1
u ‖2−‖σnen

u‖2+‖σn(en+1
u −en

u)‖2+2µτ‖∇en+1
u ‖2

+ετ‖ξn+1‖2−ετ‖ξn‖2+ετ‖ξn+1−ξn‖2

+‖∇en+1
θ ‖2−‖∇en

θ‖2+‖∇en+1
θ −∇en

θ‖2+τ‖∆en+1
θ ‖2

≤Cτ3+Cε2τ3+7χ−1τ2
N−1

∑
n=0
‖σnen

u‖2+
7
8

µτ2
N−1

∑
n=0
‖∇en

u‖2

+Cτ‖σnen
u‖2+Cτ‖σn+1en+1

u ‖2+
1
6

µτ‖∇en
u‖2

+
5
24

µτ‖∇en+1
u ‖2+Cτ‖∇en

θ‖2+
1
4

τ‖∆en
θ‖2

+2ε

(
ρn+1en+1

u ,
∫ tn+1

tn

φ(t)dt
)
−2ε

(
ρnen

u,
∫ tn

tn−1

φ(t)dt
)

.
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Adding up from 0 to N−1, we can see that

‖σNeN
u ‖2+ετ‖ξN‖2+‖∇eN

θ ‖2+τ
N−1

∑
n=0

(
3
4

µ‖∇en+1
u ‖2+‖∆en+1

θ ‖2
)

+
N−1

∑
n=0

(‖σn(en+1
u −en

u)‖2+ετ‖ξn+1−ξn‖2+‖∇en+1
θ −∇en

θ‖2)

≤Cτ2+Cε2τ2+Cτ
N−1

∑
n=0
‖σn+1en+1

u ‖2+Cτ
N−1

∑
n=0
‖∇en

θ‖2+2ε

(
ρNeN

u ,
∫ tN

tN−1

φ(t)dt
)

.

For the last term, we have

2ε

(
ρNeN

u ,
∫ tN

tN−1

φ(t)dt
)
≤ 1

2
‖ρNeN

u ‖2+Cε2τ2.

Applying Gronwall’s inequality, we deduce that

‖σNeN
u ‖2+ετ‖ξN‖2+‖∇eN

θ ‖2+τ
N−1

∑
n=0

(
µ‖∇en+1

u ‖2+‖∆en+1
θ ‖2

)
+

N−1

∑
n=0

(‖σn(en+1
u −en

u)‖2+ετ‖ξn+1−ξn‖2+‖∇en+1
θ −∇en

θ‖2)

≤C(τ2+ε2τ2).

This completes the proof.

Remark 4.2. Substitute the result of Theorem 4.2 into (4.6), we can complete the er-
ror estimate of density, i.e., ‖eN

ρ ‖ ≤ Cτ. Moreover, in the Theorem 4.2, we proved that
‖σNeN

u ‖≤Cτ, i.e.,
‖σNu(tN)−σNuN‖≤Cτ.

Actually,

‖σ(tN)u(tN)−σNuN‖≤C‖(σ(tN)−σN)u(tN)‖+‖σNeN
u ‖

≤C‖eN
ρ ‖+‖σNeN

u ‖≤Cτ,

which implies that σnun are order 1 approximations to σu.

5 Numerical results

The stability and convergence rates derived in Section 4 will be tested by a series of nu-
merical experiment in this section. By using the finite element software Freefem++, some
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effective numerical results had been obtained. We choose the unit circle as the domain to
solve the scheme (3.1a)-(3.1d):

Ω={(x,y)∈R2 : x2+y2≤1}.

The initial data are taken as:

ρ0=3+x+y, u0=0,
P0=0, θ0=2π(cos(x)−sin(y)).

5.1 Evolutions of energy and orientation field

We plot the energy curves with time steps τ = 10−i, (i = 1,2,3,4) in Fig. 1 to verify the
stability result, which is proved in Section 3. Other parameters are chosen as T=1, ε=0.1,
µ=0.1 and h=1/50, where h represents the mesh size. Two enlarged figures of Fig. 1 are
drawn in Fig. 2 to show the difference because the curves in Fig. 1 are almost coincident
when i = 2,3,4. It can be observed that the energy curve changes only slightly when
the time step is less than 10−2. An energy law is proved in Theorem 3.1. In fact, it is a
modified energy so that it is necessary to compare with original energy. We can see that
the curves of modified and original energy are almost same in Fig. 3, where (b) is the
enlarged view of (a).

Once the variable θ is calculated, we can restored the orientation field by d =
(cos(θ),sin(θ))T. The evolution of orientation field is shown in Fig. 4. One can ob-
serve that the orientation field is restored perfectly by comparing to the simulation results
in [3]. This means that it is very feasible to use this computationally cheaper method to
calculate the orientation field.
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Figure 1: The energy dissipates with different time steps.
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Figure 2: Local enlarged views of Fig. 1.
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Figure 3: Comparison between the original and modified energy.

5.2 Convergence rates

Due to the absence of the exact solution, we measure Cauchy error, i.e., the error between
two different time step sizes τ and τ/2 is calculated by ‖eζ‖=‖ζτ−ζτ/2‖. This is also the
reason that there are blanks in the table. We use (P2, P2, P1, P1) finite element discretization
for (ρ, u, P, θ). We set the total time T=1, the time steps τ=0.05, 0.025, 0.0125, 0.00625,
0.003125 0.0015625 and 0.00078125, the mesh size h=1/50. We choose different viscosities
µ=1, 0.1 and penalty parameter ε=0.1, 0.01 to compare the results.

Tables 1, 2, 3 and 4 show the numerical errors and convergence rates of (σu,ρ,θ) in L2,
L2 and H1, respectively. We can observe that the convergence rate is very much in line
with our theoretical analysis in Section 4. We did not obtain the optimal error estimate
of pressure since the technical reason. The numerical results of error and convergence of
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(a) t=0 (b) t=0.1

(c) t=0.2 (d) t=0.4

(e) t=0.6 (f) t=1

Figure 4: Snapshots of the orientation field.
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Table 1: Error and time convergence rates with µ=0.1, ε=0.1.

τ σu−L2 rate ρ−L2 rate θ−H1 rate
0.05

0.025 0.007336 0.013944 0.046176
0.0125 0.001625 2.174680 0.002853 2.289240 0.022200 1.056610

0.00625 0.000709 1.195560 0.001276 1.161060 0.011003 1.012630
0.003125 0.000334 1.085850 0.000608 1.068420 0.005475 1.007040
0.0015625 0.000162 1.044820 0.000297 1.036240 0.002730 1.003680

0.00078125 0.000080 1.022870 0.000146 1.018610 0.001363 1.001880

Table 2: Error and time convergence rates with µ=0.1, ε=0.01.

τ σu−L2 rate ρ−L2 rate θ−H1 rate
0.05

0.025 0.000751 0.001552 0.045606
0.0125 0.000165 2.188930 0.000316 2.295930 0.022355 1.028620

0.00625 0.000073 1.168390 0.000144 1.135020 0.011067 1.014340
0.003125 0.000035 1.088340 0.000068 1.072130 0.005504 1.007730
0.0015625 0.000017 1.045860 0.000033 1.037890 0.002744 1.004010

0.00078125 0.000008 1.023370 0.000016 1.019420 0.001370 1.002040

Table 3: Error and time convergence rates with µ=0.01, ε=0.1.

τ σu−L2 rate ρ−L2 rate θ−H1 rate
0.05

0.025 0.007436 0.014090 0.046186
0.0125 0.001647 2.174290 0.002882 2.289660 0.022197 1.057090

0.00625 0.000720 1.196120 0.001289 1.161250 0.011002 1.012600
0.003125 0.000339 1.085790 0.000614 1.068300 0.005474 1.007030
0.0015625 0.000164 1.044800 0.000300 1.036180 0.002730 1.003670

0.00078125 0.000081 1.022860 0.000148 1.018590 0.001363 1.001880

Table 4: Error and time convergence rates with µ=0.01, ε=0.01.

τ σu−L2 rate ρ−L2 rate θ−H1 rate
0.05

0.025 0.000746 0.001552 0.045606
0.0125 0.000164 2.188690 0.000316 2.295950 0.022355 1.028620

0.00625 0.000073 1.168440 0.000144 1.135000 0.011067 1.014340
0.003125 0.000034 1.088370 0.000069 1.072130 0.005504 1.007730
0.0015625 0.000016 1.045880 0.000033 1.037890 0.002744 1.004010

0.00078125 0.000008 1.023380 0.000017 1.019420 0.001370 1.002040
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Table 5: Error and time convergence rates of pressure.

τ µ=0.1, ε=0.1 rate µ=0.1, ε=0.01 rate
0.05

0.025 0.051657 0.052358
0.0125 0.011453 2.173250 0.011491 2.187920
0.00625 0.005002 1.195180 0.005111 1.168730

0.003125 0.002356 1.086400 0.002404 1.088580
0.0015625 0.001142 1.045070 0.001164 1.045970
0.00078125 0.000562 1.022990 0.000573 1.023420

Table 6: Error and time convergence rates of pressure.

τ µ=0.01, ε=0.1 rate µ=0.01, ε=0.01 rate
0.05
0.025 0.052328 0.052427

0.0125 0.011603 2.173100 0.011506 2.187920
0.00625 0.005066 1.195550 0.005118 1.168720
0.003125 0.002386 1.086350 0.002407 1.088580

0.0015625 0.001156 1.045050 0.001166 1.045970
0.00078125 0.000569 1.022980 0.000573 1.023420

pressure are shown in the Tables 5 and 6. We can see that the convergence rate of pressure
in L2 is nearly first order.

6 Conclusions

In this paper, we construct a numerical scheme for the reformulated Ericksen-Leslie sys-
tem with variable density. The computational efficiency and stability are improved by
using polar coordinate and pressure penalty methods. The main work is prove the first-
order temporal convergence rate. In addition, some numerical experiments have verified
the theoretical derivation results. We made some assumptions for density instead of
proving them, because this is not the focus of this paper. Readers interested in a detailed
discussion can refer to [8] and [19]. The spatial and higher order error estimations need
to be further extended as in [20].
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