Commun. Comput. Phys. Vol. 13, No. 4, pp. 1134-1150
doi: 10.4208/cicp.290811.050412a April 2013

High-Order Interpolation Algorithms for Charge
Conservation in Particle-in-Cell Simulations
Jinging Yu®2, Xiaolin Jin!, Weimin Zhou 2, Bin Li** and
Yuqiu Gu 2

1 Vacuum Electronics National Laboratory, University of Efenic Science and
Technology of China, Chengdu 610054, China.

2 Research Center of Laser Fusion, China Academy of EngigeRhiysics,
Mianyang 621900, China.

Received 29 August 2011; Accepted (in revised version) 5 April 2012
Communicated by Song Jiang
Available online 21 September 2012

Abstract. High-order interpolation algorithms for charge conservat ion in Particle-in-
Cell (PIC) simulations are presented. The methods are valid for the case that a particle
trajectory is a zigzag line. The second-order and third-ord er algorithms which can be
applied to any even-order and odd-order are discussed in thi s paper, respectively. Sev-
eral test simulations are performed to demonstrate their va lidity in two-dimensional
PIC code. Compared with the simulation results of one-order , high-order algorithms
have advantages in computation precision and enlarging the grid scales which reduces
the CPU time.

PACS: 02.60.-x, 52.65.Rr, 52.65.-y
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1 Introduction

Particle-in-cell (PIC) codes are widely used in plasma physics and astrophysics because
it is simple and straightforward. It is well known that PIC me thod can be carried out by
solving continuity equation instead of Poisson equation [1 ].

There are several techniques for satisfying the continuity equation [1-7], which are
called "charge conservation methods”. In references [4-6], the authors introduced a
charge conservation method for simple shapes of quasi-particles. As described in ref-
erences [2, 3], the patrticle trajectories were divided into straight line segments between
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the start and end points. The current density was assigned to each segment and then
charge conservation could be achieved for each particle trajectories. In references [1], the
author developed a method of density decomposition in Carte sian geometry, which was
a new charge conservation method. The method was valid for ar bitrary form-factor of
particles.

Umeda developed methods for rst-order [7] and second-order [8] spline interpola-
tion. In Umeda's methods, a particle trajectory was assumed to be a zigzag line in one
time step. The methods could be used without any "IF” stateme nts, which enhanced the
speed of computation without any substantial distortion of physics. The method for rst-
order is widely used in PIC codes because of its simple and straightforward. The method
used in second-order spline interpolation is not as simple a nd straightforward as the
method used in rst-order. It is well known that higher-order  algorithms can reduce the
numerical noises and increase the sizes of grid scales [9]. h this paper, we develop two
new methods of higher-order algorithm for the condition of a  particle trajectory assumed
to be a zigzag line in one time step and can also be used without any "IF” statements to
enhance the speed of computation, which are simple and strai ghtforward. The methods
can be applied to any even-order and odd-order, respectivel y. And the validity is checked
by comparing the results of the two methods with one-order me thod.

This paper is organized as follows: in Section 2, the zigzag scheme for second-order
which can be expanded to any even-order is presented. In Secton 3, the zigzag scheme
for third-order which can be expanded to any odd-order is con sidered. In order to check
the usability of our algorithms, we compare the simulation r esults of high-order with the
case of one-order in Section 4. The conclusions are summaried in Section 5.

2 Zigzag scheme for second-order spline interpolation

Let us consider the continuity equation in nite differences [1] and reduce it to two di-
mensions, which can be written as

Dt Dt
reRGR) Gk, &G R TG 3K
dt dx
1+ 5t . 1 t+ 0 . 1
K+ 1)+ k 1
L300 Z)dy“l/ Uk 2)_q (2.1)

Here dx and dy are the grid spaces anddt stands for one time step. The charge density r
is made up of form-factors of particles

r(j,k= é G S k(Xi.i)- (2.2)

Here g, Sj k(xi,yi) are the charge and form-factor of the ith particle. When a particle move
from a location of (x!,y!) to another, which can be written as (x'* Pt,y* P) and they are
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related as

t+ Ot
Xt+ Dt — Xt+ Vy 2 dt,
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Dt

yt*Pl= gt ' 2 dt. (2.3)

xt, xt* Bt ytand y'* Pt are scaled todx and dy. Then we can get the normalized values:

t

ot
Xold= Yold= g—y (2.4a)
Xt+ Dt t+ Dt
Xnew= dx Ynew= yd—y (2.4b)
We de ne
j1=[Xo1g+ 1.5, ki=[Yoigt+ 1.9, (2.59)
j2=[Xnewt 1.9, k2=[Ynew+ 1.9, (2.5b)

where ji1, k1, jo and ko are the largest integer values not greater than xq g+ 1.5, Yoigt 1.5,
Xnewt 1.5 andynew + 1.5 and denote the nearest grid space numbers away from Xq4, Yoid,
Xnew aNd Ynew. We assume that the particle does not move more than one grid space in
one time step, which means vydt< dx and vydt< dy. A point (X;,yr) has been de ned,
which locates between the locations of (Xo4,Yoid) @and (Xnew,Ynew). The move progress can
be divided into the moves in x-direction and y-direction. As a matter of convenience,
we only discuss the move progress in x-direction, by which way the move progress in
y-direction can be considered. In x-direction, we need think of the following cases:

(1) A particle moves less than a grid space and does not acrossthe midpoint of j; and
jit 1, which can be seen in Fig. 1. Herexgq and Xnew denote the locations at the
time t and t+ dt, respectively. Under this condition, the point x; can be expressed as
Xr = ( Xo1g* Xnew)/2.0. The move progress can be separated into two parts. The r st
progress is from Xqq and x; and the other is from X; to Xpew. The charge ux only
contributes to the points j; 1,j; and j;+ 1inthe rst progress, while in the second
the charge ux contributes to the points jo 1,j,and j>+ 1.

(2) A particle moves across the midpoint of the grid shown in F ig. 2. The locations of
the particle at t and t+ dt locate the two side of the midpoint. The point x; can be
expressed asx; = j;1 0.50rx = jo 1.5. The move progress can be separated into
the part of from Xq 4 and x; and the part of from x; to X,ew. The charge ux only
contributes to the points j; 1,j;and j;+ 1inthe rstpart, while in the second part,
the charge ux contributes to the points j» 1,j,and jo+ 1.

In y-direction, the move progress can be considered by the same methods above. The
particle trajectories of zigzag method in two dimensional f or any even-order interpola-
tion can be described in Fig. 3. While in the second-order int erpolation method of Umeda,
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Figure 1: Location of the particle att and t+ dt of Case (1).

Figure 2: Location of the particle att and t+ dt of Case (2).
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Figure 3: The particle trajectories of zigzag method in twoithensional under the condition of any even-order
interpolation.

the point (x,yr) can be expressed as follows [8]:

8 8
X1+ X . . +
2 172 (j1=J2), 3 LZW (ke = ko),
XZS (hrjDx . .. Y= 5 (ki+ k2) Dy (2.6)
> MR e o), > Y (e k).

From the above argumentations, we can get the equations, which can be used to compute
the point (X,yr),

min[min(j; 0.5j2 0.5),max(max(j; 1.5j2 1.5),(Xoid* Xnew)/2.0)], (2.7a)
min[min(k; 0.5k, 0.5,max(max(k; 1.5k, 1.5,(Yoidt+ Ynew)/2.0)]. (2.7b)

Xr
Yr
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After getting the point (X,yr), a charge ux gi(vyx,vy) can be separated intoF; = ( F1,Fy1)
and R =( F,R2). Here R, Fy1, Fo and Fy» can be expressed as:
Fei= g% Xgig)dX/ dt, Fo= Gi(Xnew Xr)dX/ dt=qvy Fy, (2.8a)
F1=a(yr Yoig)dy/ dt, F2= Gi(Ynew Yr)dy/ dt=ogivy Fy. (2.8b)
Here q; is the quantity of electric charge of the ith particle. We apply shape-factors de ned
at the midpoints of (Xqi4,Yoi1d) and (Xr,yr) and (Xr,yr) and (XnewsYnew), respectively. Under
the case of second-order spline interpolation, we de ne weig hting functions wyz, Wyo,
Wy3, Wy1, Wy2 and Wy3 for the midpoint of (Xoid:Yord) and (Xr,yr) and wya, Wys, Wy, Wya,
wys and wyg for the midpoint of  (X;,yr) and (Xnew Ynew), Which can be expressed as follows
[9,10]:
Wy1= 0.1282xx3; 3.00%,  Wyo= 0.75 xx%, W= 0.1252xx15 3.0%  (2.93)
wy1= 0.1252yy11 3.0%  wy=0.75 yy%,  wye=0.1252yy13 3.0°  (2.9b)

and

Wya= 0.1252xXo1 3.0%  Wys=0.75 XX3,  Wye= 0.1252xxp3 3.00%,  (2.10a)
Wys= 0.1252yy21 3.0%,  Wys=0.75 yy3,  Wye= 0.1252yy,3 3.0°.  (2.10b)

Here XX11, XX12, XX13, XX21, XX22, XX23, YY11, YY12, YY13, YY21, YY22, YY23 are denoted as:

xx11=( Xolg* Xr)/2.0  (j1 2), (2.11a)
XX12= j(Xoig+ X1)/2.0  (j1  1)j, (0 xxp2 0.5), (2.11b)
xx13= j1 (Xolg* Xr)/2.0, (2.11c)
XX21=( Xnewt Xr)/12.0  (j2 2), (2.11d)
XX22= j(Xnewt X)/2.0  (j2 1)j, (0 xxp 0.5, (2.11e)
XX23= j2 (Xnew* Xr)/2.0, (2.11f)
yy11=(Yola* ¥r)/2.0 (ki 2), (2.119)
YY12= j(Yoiat ¥r)/2.0 (ki 1)j, (0 yyi, 0.5), (2.11h)
yy13= K1 (Yot yr)/2.0, (2.11i)
YY21=(Ynewt ¥r)/2.0 (k2 2), (2.11j)
Yy22= j(Ynewt ¥r)/12.0 (k2 1)j, (0 yy», 0.5, (2.11K)
yy23= k2 (Xnew* Xr)/2.0. (2.111)
We de ne
j1in=[Xoq*+ 1.0, j22=[ Xnew* 1.0], (2.123)

ki1=[Yoia+ 1.0, ko2=[ Ynew+ 1.0]. (2.12b)
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The equations remark that j11, j22, k11 and ky» are the grid numbers where Xo1d4, Xnews Yold
and ynewlocate. Then we can get the parts of the charge ux contribute d to the grid points
by the following expressions

ix(ki 1,j11+0.5)= DnyFxlwyl, ix(ko 1,joo+ 0.5)= DnyFX2Wy4, (2.13a)
ix(kpjut 0.9 = o XDy = Fawyo, ix(kaj22+ 0.9 = o 1Dy FxaWys, (2.13b)
jx(kit 1,j11+ 0.5 = DxlDy Fx1Wys, jx(ko+ 1,j20+ 0.5)= DDy ——— FyaWys, (2.13c)
iyt 05j1 )= goFawa, (et 05)2 D= go o (2130)
iy(kun+ 0.5)2)= = lDy Rz, iy(keo* 0.5)2)= = 1Dy 2y, (2.13¢)
bt 0501+ D= e-Fawa, Jy(keet 052+ )= g Raws, (2130

After getting the charge ux contributed by each particle, t he total current densities can
be obtained. In any even-order spline interpolation, using the particle trajectories of
zigzag method used in the second-order spline interpolatio n can receive expression sim-
ilarly to Eq. (2.11) and then any even-order spline interpol ation can be expanded to by
adopting correspondence weighting function (e.qg., the met hod expanded to fourth-order
spline interpolation can be seen in Appendix A), but cannot b e used in the case of odd-
order spline interpolation.

3 The case of third-order spline interpolation

We consider the condition of odd-order spline interpolatio n in this section. Third-order
condition is introduced as an example. The method used here can be expanded to any
odd-order cases. The relation between the initial and new lo cation can be written as
Eg. (2.3) and the expressions ofXq4, Xnews Yoid @nd Ynew are the same as Eqg. (2.4). We
de ne

j1=[Xoia* 1.0], ki=[Yoig+ 1.0, (3.1a)
j2=[Xnewt 1.0], k2=[Ynewt 1.0]. (3.1b)

Here j1, k1, j2 and k» denote the grid space number where X4, Yoid: Xnew and Ynew lO-
cate. In the method of third-order spline interpolation, wh en a particle moves across the
cell mesh, the weighting will change. The same as described above, we assume a point
(Xr,yr) and consider the move progress in x-dimension. The following cases should be
considered:
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Figure 4: Location of the particle att and t+ dt of Case (1).

Figure 5: Location of the particle att and t+ dt of Case (2).

(1) A particle moves less than a grid space and does not move aaoss the cell mesh,
which can be seen in Fig. 4. Under this case, the point x; can be written as x; =
(Xo1g+ Xnew)/2.0. The progress can be separated into two parts. One is from Xgq to
Xr and the other is from X, to Xhew. The charge ux only contributes to the points
j1 1,j1, jat 1 andj;+ 2 in the rst progress, while the second contributes to the
points j» 1,j2,j2t 1andjo+ 2.

(2) A particle moves across the cell mesh as shown in Fig. 5. Atthis time, Xq g and Xnpew
locate at the two side of the grid. The point x; can be expressed asx,=(j;+ 1) 1.0
or Xy = j» 1.0. We can separate the progress into two parts. One is from Xqq t0 X,
and the other is from X; to Xnew. The charge ux only contributes to the points of
ji 1,j1, jia+ 1 and j;+ 2 in the rst progress, while the second contributes to the
points of jo 1,jo,j2+ 1andjo+ 2.

Figure 6: The particle trajectories of zigzag method in twoithensional under the condition of any odd-order
interpolation.
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After getting the move progress in x-direction, we can obtain the condition in y-
direction by the same way. The particle trajectories of zigz ag method in two dimensional
for any odd-order interpolation can be described in Fig. 6.

Then the point (Xar,Yar) can be computed from the following equations

Xy = min[min (j1,j2),max(max(j;  1.0j2 1.0),(Xoigt+ Xnew)/2.0)], (3.2a)
yr = min[min (kg,k2),max(max(k; 1.0k 1.0),(Yoig+ Ynew)/2.0)]. (3.2b)
Here F1, K1, Fx2 and Ry, are the same as Eq. (2.7). Under the case of third-order splire
interpolation, we de ne weighting functions Wy, Wy2, Wx3, Wy4, Wy1, Wyo, Wyz and wy, for

the midpoint of (Xoig,Yoid) @nd (Xr,yr) and wys, Wxe, Wx7, Wxs, Wys, Wyg, Wy7 and wyg for
the midpoint of (X;,yr) and (XnewYnew), Which can be expressed as follows [9, 10]:

Wy =(2.0 xx11)%6.0, Wxo=(4.0 6xx2,+ 3xx3,)/6.0, (3.3a)
Wia=(4.0 6xx35+ 3xx3,)/6.0, Wis=(2.0 xx14)°/6.0, (3.3b)
wy1=(2.0 yy11)°/6.0, Wyo=(4.0 Byy3,+ 3yy3,)/6.0, (3.3¢)
Wy3=(4.0 6yy3;+ 3yy3,;)/6.0, Wya=(2.0 yy14)%6.0, (3.3d)
wys=(2.0 xx21)%6.0, W= (4.0 6xx3,+ 3xx3,)/6.0, (3.3e)
Wy7=(4.0 6xx35+ 3xx33)/6.0, Wyg=(2.0 Xx24)°/6.0, (3.3f)
Wys5=(2.0 yy21)°/6.0, Wys=(4.0 6yy2,+ 3yy3,)/6.0, (3.39)
Wy7=( 4.0 6yy3s+ 3yy3;)/6.0, Wyg=(2.0 Yyo4)/6.0. (3.3h)

XX11, XX12, XX13, XX14, XX21, XX22, XX23, XX24, YY11, YY12, YY13: YY14, YY21, YY22, YY23 @nd Yyo4
are denoted as:

XX11= 1.0+ XXqo, XX12=( Xoigt+ Xr)/2.0  (j1 1), (0 xx12 1), (3.4a)
XX13= 1.0 XX12, XX14= 2.0 XX12, (3.4b)
XX21= 1.0+ XXz, XX22=( Xoig+ Xr)/2.0  (j» 1), (0 xx22 1), (3.4c)
XX23= 1.0 XX, XXo4= 2.0 XX, (3.4d)
yy11= 1.0+ yy1o, YY12= (Yot yr)/2.0 (ki 1), (0 yyz 1), (3.4e)
yy13= 1.0 Yyyo, yy14= 2.0 yy1o, (3.4f)
yy21= 1.0+ yyzo, YY22=( Ynewt ¥r)/2.0 (k2 1), (0 yy 1), (3.49)
yy23= 1.0 yy2, Yy24= 2.0 yyazo. (3.4h)

Then we can get the parts of the charge ux contributed to the g rid points by the follow-
ing expressions:

. . 1 . . 1
jx(ki 1,j1+1.5= —ny1Wy1, jx(ka 1o+ 1-5)= ny2Wy5, (3.5a)

jX(kl!Jl 5) y FXlWy21 jX(kZ!JZ 5) yFXZWy61 (35b)
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jx(ki+ 1,j1+ 1.5= DxDy Fawys, jx(ko+ 1,j2+ 1.5 = DxDy Fowyz, (3.5¢)
. . . . 1

jx(ki+2,j1+ 1.5= WFxlwym jx(ko+ 2,j2+ 1.5 = rDnyzwys, (3.5d)
. 1 . o

jy(ki+1.5j1 1)= DxDy Fy1Wx1, jy(ko+ 1.5j> 1)= DxDy Fy2Wxs, (3.5e)
. . 1 . . 1

jy(kit 1.5)1)= WFylwxz, jy(kot 1.5)0) = WFyZer, (3.5f)
. . 1 . . 1

jy(ki+ 1.5j1+ 1)= DxDy F1wxa, jy(kot 1.5)0+ 1)= DxDy FoWy7, (3.50)
. . 1 . . 1

If add up the charge ux contributed by each particle, we can o btain the total current den-
sities under the condition of third-order spline interpola tion. In any odd-order spline in-
terpolation, using the particle trajectories of zigzag met hod used in the third-order spline
interpolation can receive expression similarly to Eg. (3.5) and then any odd-order spline
interpolation can be expanded to by adopting correspondenc e weighting function (e.qg.,
the method expanded to fth-order spline interpolation can b e seen in Appendix B).

4 Application test

In order to test the algorithms, some simulations are perfor med. The application tests are
completed using fully relativistic electromagnetic PIC co de, one-order code of which has
been successfully used in the interactions of laser and plasma [11]. The order for the elds
is the same as used for charge and charge ux in this paper. The tests are performed on a
PC with Dual Pentium(R) 2.20GHz processor. The velocity of h ole boring and numerical
error under the condition of different order are tested, res pectively.

The simulation condition of hole boring can be described as f ollows. The scales of
simulation box used here are X; Y_= 10 ¢ 10 o= 2823 pe 2823 pe with the time
step of 0.0125 , the simulation duration of 70 t and the grid size of DX = DY =0.03 o=
8.47 pe, Where t and | o= 1.06rm are the period and wavelength of laser pulse, | pe is
the Debye length of electron, respectively. 100 electrons (ons) are used in one cell. with
the total particles of 3.55 10°. We considered a Gaussian p-polarized laser pulse with
duration of 10t and focal spot of 41 . The laser introduces along the axis from the left.
The peak intensity is 1o= 3.5 10**W/cm 2. The initial temperatures of electrons and ions
are 1.0keV and 0.1keV, respectively. A planar target with 41 3 8l g and density of 4n¢ is
considered. Here n¢ is the critical density, which is related to the frequency of the laser as
Ne= MeW3/4 p €.

Hole boring [12] of laser pulse into plasma is a very importan tfeature of laser-plasma
interaction. We perform the velocities of hole boring in the cases of rst-, second- and
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Figure 7: lon density distribution at the time oft= 70t, (a) the simulation result of rst-order case, (b) the
result of second-order case, (c) the result of third-orderase.

third-order algorithms, while xing other parameters. From  Fig. 7, we can see the ion
density distributions under different-orders at the time o f t= 70t. The depths of the
holes are almost the same at the same time, which means using higher-order methods do

not affect the physics.

In order to study the advantages of high-order algorithm, we calculate the total en-
ergy vs. time without external- eld. A 40 n¢ with 2 nm wide and 5 nm thick plane target
is considered. First-order method under the condition of Dx= Dy = 15.3 pe, Dx= Dy =
18.3 pe and second-order with Dx= Dy= 15.3 pe, Dx=Dy=24.9 p. and Dx= Dy=45.9 p¢
are simulated. The time steps are 0.02% under the cases of Dx = Dy = 15.3 pe and
Dx= Dy= 18.3 pe, 0.04 under the cases of Dx= Dy = 24.9 pe and 0.0% under the cases
of Dx= Dy = 45.9 pe. 900 electrons (ions) are used in one cell. The temperaturesof elec-
trons and ions are 7.6keV. Fig. 8 shows the total energy vs. time. From Fig. 8, we can nd
second-order algorithm can suppress numerical grid heatin g and allow increasing grid
size in PIC codes. Using second-order algorithm the grid siz es can be extended up to 46
Debye lengths without signi cant numerical heating over the time of 400fs. The second-

Figure 8: Total energy vs. time ol o wide and5l g thick plane target, the grid scales ar®x= Dy= 15.3 pe=
0.05mm, Dx= Dy= 18.3 pe= 0.06rm under the condition of rst-order algorithm andDx= Dy= 15.3 pe= 0.051m,
Dx= Dy= 24.3 pe= 0.08mm, Dx= Dy= 45.9 pe= 0.15mm under the condition of second-order algorithm.
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order method is very useful in calculating the ef ciency of la ser to plasma. Generally
speaking, numerical error mostly comes from the precision a nd the steps of computa-
tion. In the case of larger grid size, larger time step is adop ted and smaller number of
computational steps is received and then smaller numerical error can be obtained; mean-
while, the precision of computation reduces as the expandin g of the grid size will enlarge

the numerical error. On the other hand, reducing the grid siz e, the precision can be im-
proved. Meanwhile, larger number of computational steps wil | be consumed, which will

enhance the numerical error of repeated addition. In summar y, under the condition of

second-order case, the result that the total energy of Dx= Dy = 15.3 pe is larger than that
of Dx= Dy= 24.3 p, after the time of 110t shown in Fig. 8 is the outcomes of the above
two reasons.

Fig. 9(a) shows the total energy vs. different particles per cell of 2| o wide and 51 ¢
thick plane target at the time of 400fs, the grid scales are Dx = Dy = 30.71 p, for second-
order and Dx = Dy = 15.3 pe for rst-order, respectively. Under the condition of rst-
order, 900 electrons (ions) are used in one cell. In the case 6 second-order, 900, 1600,
2500, 3600 electrons (ions) are considered in one cell, respctively. From the gure, we
nd that the energy conservation is better under the conditio n of more number of par-
ticles per cell. When the eld is added, the energy conservati on is better than the case
of without external- eld. Fig. 9(b) shows the CPU time as a fun ction of the number of
particle under the conditions of rst-order and second-orde r, from which we can nd
high-order algorithms have advantages in reducing the CPU t ime.

(a) (b)

Figure 9: (a) Total energy vs. dierent particles per cell ol o wide and5l ¢ thick plane target at the time
of 400fs, the grid scales ar®x= Dy= 30.71 pe= 0.1mm for second-order andDx = Dy = 15.3 pg= 0.051m for
rst-order; (b) CPU time as a function of particles per cell &the time of 400fs.

Under the condition of third-order method, a 40 n¢ with 20 mm wide and 25 nmm thick
plane target is considered. The temperatures of electrons and ions are both 7.6keV. 10000
electrons (ions) are used in one cell. The grid sizes are extemded to Dx= Dy = 0.96rm =
293.71 pe. Compared with the result of second-order method with Dx= Dy = 0.31m =
91.7 pe, as shown in Fig. 10, third-order algorithm can extend the gr id sizes up to 294
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Figure 10: Total energy vs. time under the conditions of dieent-order method.

Debye lengths without signi cant numerical heating over the time of 260fs, which indi-
cates that high-order method can enlarge the grid scales and reduce the CPU time.

5 Conclusions

In this paper, high-order algorithms for charge conservati on in Particle-in-Cell (PIC) sim-
ulations are presented. The algorithms are valid for the cas e that a particle trajectory is a
zigzag line.

The method of second-order algorithm which can be applied to any even-order al-
gorithms is introduced. And the algorithm for third-order f  orm-factor which can be ex-
panded to any even-order algorithms is also presented.

The algorithms in 2D-PIC code are tested and proved the usability of the methods.
The simulation results indicate that high-order algorithm s can reduce the numerical noises,
increase the sizes of space grids and reduce the CPU time.
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Appendix
A The method expanded to fourth-order spline interpolation

The weighting functions Wy, Wyo, Wx3, Wya, Wxs, Wy1, Wy2, Wy3, Wy4 and wys for the mid-
point of (Xoig,Yold) @nd (Xr,yr) and Wye, Wx7, Wxa, Wxa, Wx10, Wys, Wy7, Wyg, Wyg and wy1q for
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the midpoint of (X;,yr) and (Xnew Ynew) Can be expressed as follows:
4

Wx1= Z‘r 5> XX,
Wx2 = 120(51+ 75xx12  210¢x2 + 150)(fo 45xx2 + 5xx° ),
Wxa= 7 0(51+ 75%xX1a  210kxZ + 150xx3  45xx? + 5xX°),
15 4
Wx5= o4 2 XX15
15 4
Wy1= Zl > Yyu
Wy2= 120(51+ 7512 210yy;,+ 150yy;, 45y, +5yyy),
Wy3 = 192(115 120yy73+ 48yY1s),
Wya= 120(51+ 7514 210yy;,+ 150yy;, 45y, + 5yyy),
15 4
Wys= 357 5 Y15
15 4
Wxe = >4 2 XX21
_ 1 2 3 4 5
Wy7 = —(51+ 75X 210xxZ,+ 150xx;,  45xx,+ 5xx7),
Wxe= ¢ 9 2(115 120xX35+ 48xX33),

Wig = 1—20(51+ 75xX4  210x5,+ 150xx3, 45X, + 5xx3),

1 5 4
Wy10= 24 E XX25
4
Wyg = z‘ > Yya1
Wy7 = 120(51+ 75yys, 210yyZ,+ 150yyS,  45yy,,+ 5yy),
Wyg = 192(115 120yy55+ 48yy3s),
Wy = (51+ 75yyas 210yyZ + 150yy>  45yy? + 5yy>),

120
5 4
Wy10= >4 2 YYos
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Here XX11, XX12, XX13, XX14, XX15, XX21, XX22, XX23, XX24, XX25, YY11, YY12, YY13, YY14, YY15,
YY21, YY22, YY23, YY24, YY25 are denoted as:

xX11=( Xoig+ %r)/2.0  (j1 3),
1)j,

XX12=( Xoig+ Xr)/2.0  (j1 2),
(0 xx33 0.5,
XX15= j1+ 1.0 (Xoig+ Xr)/2.0,
XX22=( Xnewt X:)/2.0  (j2 2),
(0 xxo3 0.5,
XX25= jo+ 1.0 (Xpewt Xr)/2.0,
yy12=(Yoiat ¥r)/2.0 (ki 2),
(0 yyis 0.5),
yy14= ki+ 1.0 (Yoig+ ¥r)/2.0,
YY22=(Ynewt yr)/2.0 (k2 2),
(0 yy2s 0.5),
yy25=ko+ 1.0 (Xpewt Xr)/2.0.

XX13= J(Xoia* Xr)/2.0  (j1
XX14= j1  (Xoig* Xr)/2.0,
XX21=( Xnewt X)/12.0  (j2 3),
XX23= J(Xnewt Xr)/12.0  (j2 1)],
XX24= jo  (Xnewt Xr)/2.0,

yy11=(Yoiat ¥r)/2.0 (ki 3),
yy13= j(Yoiat ¥r)/2.0 (ki 1)j,
yy14= K1 (Yolat yr)/2.0,

YY21=(Ynewt ¥r)/2.0 (k2 3),
YY23= j(Ynewt ¥r)/2.0 (k2 1)j,
Yy24= K2 (Xnew* Xr)/2.0,

The expressions of Xgg, Xr,» Xnews Yolds Yrs Ynews J1, J2, K1, K2 can be seen in (2.4), (2.5) and

(2.7). We de ne

j11=[ Xo1g+ 1.0,
ki1=[Yoiat+ 1.0,

j22=[ Xnew* 1.0,

Then we can get the parts of the charge ux contributed to the g rid points by the follow-

ing expressions:

jx(ki 2,j11+0.5)= DxlDnylwyl’ jx(k2  2,j22+ 0.5)= DxlDyFXZWVG’
jx(ki 1,ji1+0.5= DxlDnylwyz, jx(k2 Ljot+ 0.5)= DxlDyFXZWW’
jx(ki,j11+ 0.5 = 5 1Dy FxaWya, jx(k2,j22+ 0.5) = 5 1Dy FroWyes,

jx(ki+ 1,jin+ 0.9 = DxlDy FaWya, jx(kot+ 1,j2o+ 0.5) = DxDy FaWyg,
jx(ki+2,j11+ 0.5 = DxlDy Fx1Wys, jx(ko+ 2,j22+ 0.5 = DxlDy FxaWy10,
jy(ki1+0.5j1 2)= DnyFylwxl, jy(koo+ 0.5, 2)= DnyFyzwxe,
jy(ki1+0.5j1 1)= DxlDyFylwxz, jy(koo+ 0.5, 1)= DxlDyFy2Wx7,
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1 1
i +0.5j;)= —— i +0.5)0)= R
Jy(ki1+ 0.5}j1) DxDy F1wWxa, Jy(ka2+ 0.5))2) DxDy y2Wx8,
. . 1 . . 1
Jy(Ki1+ 0.5j1+ 1) = DxDy F1Wx4, Jy(kao+ 0.50+ 1) = DxDy Fy2Wxo,
1 1
i + 05+ 2)= j +05j,+2)= —FK .
Jy(ki1+ 0.5j1+ 2) DxDy F1Wxs, Jy(kao+ 0.52+ 2) DxDy y2Wx10

B The method expanded to fth-order spline interpolation

The weighting functions for the midpoint of  (Xgi4,Yo14) @nd (X;,yr) and for the midpoint
of (Xr,yr) and (Xnew Ynew) Can be expressed as follows:

Wy1=(3.0 Xxx11)°/120,

Wy =( 51+ 75xX1p  210kx2,+ 150xx5, 45xx7,+ 5xx3,)/120,
Wya=(33 30xx2;+ 15xx{5 5xx35)/60,

Wys=(33 30xx2,+ 15xx7, 5xx3,)/60,

Wys=( 51+ 75xx15 2103+ 150kx3s  45xXjs+ 5XX35)/120,
Wye=(3.0 Xx16)°/120,

wy1=(3.0 yy1)®/120,

Wy2=( 51+ 78yy1» 210yy7,+ 150yy3, 45yy1,+ 5yy3,)/120,
wy3=(33 30yyfs+ 15yy1; 5yyts)/60,

Wya=(33 30yyis+ 15yy1s 5yy34)/60,

Wys=( 51+ 75yy1s  210yyis+ 150yy3s  45yyis+ 5yys)/120,
Wy6=(3.0 yyie)°/120,

Wy7=(3.0 XXp1)°/120,

Wyg=( 51+ 75xxz2  210xx3,+ 150xx3, 45xX3,+ 5XX3,)/120,
Wyo=(33 30xx33+ 15xX35 5Xx33)/60,

Wy10=( 33 30xx5,+ 15xx3, 5xx5,)/60,

Wy11=( 51+ 75xXp5  210xX55+ 150xx35  45xX35+ 5XX55)/120,
Wy12=( 3.0 XXp6)°/120,

wy7=(3.0 yya1)*/120,

Wyg=( 51+ 75yyz,  210yy3,+ 150/y3, 45yy3,+ 5yy3,)/120,
Wyo=(33 30yy3s+ 15yy3; 5yy3,)/60,
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Wy10= (33 30yy5,+ 15yy5, 5yy3,)/60,
Wy11=( 51+ 75yyo5  210yy3s+ 150yy3s  45yy5s+ 5yy35)/120,
Wy12=(3.0 yy26)°/120,

where XX11, XX12, XX13, XX14, XX15, XX16, XX21, XX22, XX23, XX24, XX25, XX26, YY11, YY12, YY13,
YY14, YY15: YY16, YY21, YY22, YY23, YY24, YY25 and yyoe are denoted as:

XX11= 2.0+ XX13, XX12= 1.0+ XX13, XX13=( Xgig+ Xr)/2.0 (j2 1), (0 xxi3 1),
XX14= 1.0 XX13, XX15= 2.0 XX13, XX16= 3.0 XX13,
XX21= 2.0+ XX23, XX22= 1.0+ XX23, XX23=(Xoig+ Xr)/2.0 (j2 1), (0 xxz3 1),
XX24= 1.0 XXp3, XX25= 2.0 XX23, XX26= 3.0 XXo3,
yy11= 2.0+ yy13, yyi2= 1.0+ yyis, YY¥13=(Yoia* ¥r)/2.0 (ki 1), (0 vyyis 1),
YY14= 1.0 yyi3, Yy15=2.0 yyi3, Yy16=3.0 Yyi3,
YY21= 2.0+ Yyo3, YY22= 1.0+ yyo3, Yy23=(Yoiat ¥r)/2.0 (k2 1), (0 yyzs 1),

yY24= 1.0 yyo3,

yy2s= 2.0 yyos,

yy26= 3.0 yyas.

The expressions of Xgg, Xr,» Xnews Yolds Yrs Ynews J1, J2, K1, K2 can be seenin (2.4), (3.1) and
(3.2). Then we can get the parts of the charge ux contributed to the grid points by the
following expressions:

(ke 21+ 1.9= %Dyalwyl, (ko 2o* 1.9= DxlDny2Wy7,
hla Lict19= gooRawe e Lizt 197 DxlDny2Wy8,
(s 19= 5o Fawsa il lat L9= 5o Fawye

ot Lit 19= g Famgs (ke Liz+ 19= 5o Ravyo
jx(ki+ 2,j1+ 1.9 = DXDy ———FaWys, jx(ko+ 2,j2+ 1.5 = DxDy ———FoWy11,
jx(ki+ 3,j1+ 1.9= DxlDy Fx1Wye, jx(ko+ 3,j2+ 1.5 = DxlDy FraWy12,
blat 1501 9= gooFawa, et 18iz 2= o Raw
jy(ke+ 1.5j1 1)= DxDy Fy1Wy2, jy(ka+ 1.5j> 1)= DnyFyzwxs,
jy(ke+ 1.5j1)= DlDyFylwxg’ jy(ka+ 1.5)2)= DlDyFyZWxg,
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. . 1 . . 1
+ 1. +1)= + 1. +1)=
Jjy(ki+ 1.5j1+ 1) DxDy F1 Wya, Jy(ko+ 1.5j5+ 1) DxDy F2 Wxio
. . 1 . . 1
+15),+2)= —— +15j,+2)= ——
Jjy(ki+ 1.5j1+ 2) DxDy Fy1 Wys, Jy(ko+ 1.5)2+ 2) DxDy F2 Wy
. . 1 . . 1
+ 1. +3)= — + 1. + 3)= .
jy(ki+ 1.5j1+ 3) DxDy Fy1 Wy, Jy(ko+ 1.55+ 3) DxDy F2 Wxi2
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