On a Generalized Matrix Algebra over Frobenius Algebra
Commun. Math. Res., 35 (2019), pp. 65-74.
Published online: 2019-12
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-35-65,
author = {Xu , Qingbing and Zhang , Kongsheng},
title = {On a Generalized Matrix Algebra over Frobenius Algebra},
journal = {Communications in Mathematical Research },
year = {2019},
volume = {35},
number = {1},
pages = {65--74},
abstract = {
Let $A$ be a Frobenius $k$-algebra. The matrix algebra $R=\begin{pmatrix}A & _AA_k\\[1mm]_kA_A & k\end{pmatrix}$ is called a generalized matrix algebra over a Frobenius algebra $A$. In this paper we show that $R$ is also a Frobenius algebra.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.01.07}, url = {http://global-sci.org/intro/article_detail/cmr/13475.html} }
TY - JOUR
T1 - On a Generalized Matrix Algebra over Frobenius Algebra
AU - Xu , Qingbing
AU - Zhang , Kongsheng
JO - Communications in Mathematical Research
VL - 1
SP - 65
EP - 74
PY - 2019
DA - 2019/12
SN - 35
DO - http://doi.org/10.13447/j.1674-5647.2019.01.07
UR - https://global-sci.org/intro/article_detail/cmr/13475.html
KW - Frobenius algebra, generalized matrix algebra, dual functor
AB -
Let $A$ be a Frobenius $k$-algebra. The matrix algebra $R=\begin{pmatrix}A & _AA_k\\[1mm]_kA_A & k\end{pmatrix}$ is called a generalized matrix algebra over a Frobenius algebra $A$. In this paper we show that $R$ is also a Frobenius algebra.
Qingbing Xu & Kongsheng Zhang. (2019). On a Generalized Matrix Algebra over Frobenius Algebra.
Communications in Mathematical Research . 35 (1).
65-74.
doi:10.13447/j.1674-5647.2019.01.07
Copy to clipboard