Orthogonal Projections and the Perturbation of the Eigenvalues of Singular Pencils

Authors

  • Ji-Guang Sun

Abstract

In this paper we obtain a Hoffman-Wielandt type theorem and a Bauer-Fike type theorem for singular pencils of matrics. These results delineate the relations between the perturbation of the eigenvalues of a singular diagonalizable pencil $A-λB$ and the variation of the orthogonal projection onto the column space $\mathcal{R} \Bigg( \begin{matrix} A^H \\ B^H  \end{matrix} \Bigg)$.

Published

2018-11-20

Abstract View

  • 35644

Pdf View

  • 4016

Issue

Section

Articles

How to Cite

Orthogonal Projections and the Perturbation of the Eigenvalues of Singular Pencils. (2018). Journal of Computational Mathematics, 1(1), 63-74. https://www.global-sci.com/index.php/JCM/article/view/10710