The Nearest Bisymmetric Solutions of Linear Matrix Equations
Keywords:
Bisymmetric matrix, Matrix equation, Matrix nearness problem, Kronecker product, Frobenius norm, Moore-Penrose generalized inverse.Abstract
The necessary and sufficient conditions for the existence of and the expressions for the bisymmetric solutions of the matrix equations (I) $A_1X_1B_1+A_2X_2B_2+\cdots+A_kX_kB_k=D$, (II) $A_1XB_1+A_2XB_2+\cdots+A_kXB_k=D$ and (III) $(A_1XB_1, A_2XB_2, ··· , A_kXB_k) = (D_1, D_2, ··· , D_k)$ are derived by using Kronecker product and Moore-Penrose generalized inverse of matrices. In addition, in corresponding solution set of the matrix equations, the explicit expression of the nearest matrix to a given matrix in the Frobenius norm is given. Numerical methods and numerical experiments of finding the nearest solutions are also provided.
Published
2021-07-01
Abstract View
- 35059
Pdf View
- 3884
Issue
Section
Articles
How to Cite
The Nearest Bisymmetric Solutions of Linear Matrix Equations. (2021). Journal of Computational Mathematics, 22(6), 873-880. https://www.global-sci.com/index.php/JCM/article/view/11680