Multidimensional Relaxation Approximations for Hyperbolic Systems of Conservation Laws
Keywords:
Multidimensional hyperbolic systems, Relaxation methods, Non-oscillatory reconstructions, Asymptotic-preserving schemes.Abstract
We construct and implement a non-oscillatory relaxation scheme for multidimensional hyperbolic systems of conservation laws. The method transforms the nonlinear hyperbolic system to a semilinear model with a relaxation source term and linear characteristics which can be solved numerically without using either Riemann solver or linear iterations. To discretize the relaxation system we consider a high-resolution reconstruction in space and a TVD Runge-Kutta time integration. Detailed formulation of the scheme is given for problems in three space dimensions and numerical experiments are implemented in both scalar and system cases to show the effectiveness of the method.
Published
2007-08-02
Abstract View
- 32084
Pdf View
- 3560
Issue
Section
Articles
How to Cite
Multidimensional Relaxation Approximations for Hyperbolic Systems of Conservation Laws. (2007). Journal of Computational Mathematics, 25(4), 440-457. https://www.global-sci.com/index.php/JCM/article/view/11838