Reducing Subspaces of Toeplitz Operators on $N_ϕ$-Type Quotient Modules on the Torus

Authors

  • Yan Wu
  • Xianmin Xu

Keywords:

module, $N_ϕ$-type quotient module, the analytic Toeplitz operator, reducing subspace, finite Blaschke product

Abstract

In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol $S_{ψ(z)}$ on $N_ϕ$ has at least $m$ non-trivial minimal reducing subspaces, where $m$ is the dimension of $H^2(Γ_ω) ⊖ ϕ(ω)H^2 (Γ_ω)$. Moreover, the restriction of $S_{ψ(z)}$ on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift $M_z$.

Published

2021-05-20

Abstract View

  • 31791

Pdf View

  • 2975

Issue

Section

Articles

How to Cite

Reducing Subspaces of Toeplitz Operators on $N_ϕ$-Type Quotient Modules on the Torus. (2021). Communications in Mathematical Research, 25(1), 19-29. https://www.global-sci.com/index.php/cmr/article/view/8596