The Geometric Measure Theoretical Characterization of Viscosity Solutions to Parabolic Monge-Ampere Type Equation
Keywords:
geometric measure theory; parabolic Monge-Ampère operator; weak (or generalized) and viscosity solutionAbstract
By an involved approach a geometric measure theory is established for parabolic Monge-Ampère operator acting on convex-monotone functions, the theory bears complete analogy with Aleksandrov's classical ones for elliptic Monge-Ampère operator acting on convex functions. The identity of solutions in weak and viscosity sense to parabolic Monge-Ampère equation is proved. A general result on existence and uniqueness of weak solution to BVP for this equation is also obtained.Downloads
Published
1993-06-01
Abstract View
- 39461
Pdf View
- 2549
Issue
Section
Articles
How to Cite
The Geometric Measure Theoretical Characterization of Viscosity Solutions to Parabolic Monge-Ampere Type Equation. (1993). Journal of Partial Differential Equations, 6(3), 237-254. https://www.global-sci.com/index.php/jpde/article/view/3747