Quantum Euler-Poisson System: Local Existence of Solutions

Authors

  • Chengchun Hao , Yueling Jia & Hailiang Li

Keywords:

Quantum Euler-Poisson system;existence of local classical solutions;non-linear fourth-order wave equation

Abstract

The one-dimensional transient quantum Euler-Poisson system for semiconductors is studied in a bounded interval. The quantum correction can be interpreted as a dispersive regularization of the classical hydrodynamic equations and mechanical effects. The existence and uniqueness of local-in-time solutions are proved with lower regularity and without the restriction on the smallness of velocity, where the pressure-density is general (can be non-convex or non-monotone).

Published

2020-05-12

Abstract View

  • 40347

Pdf View

  • 2534

Issue

Section

Articles

How to Cite

Quantum Euler-Poisson System: Local Existence of Solutions. (2020). Journal of Partial Differential Equations, 16(4), 306-320. https://www.global-sci.com/index.php/jpde/article/view/4007